K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2020

1. x( x - 3 ) + y( y - 3 ) + 2xy - 35

= x2 - 3x + y2 - 3y + 2xy - 35

= ( x2 + 2xy + y2 ) - ( 3x + 3y ) - 35

= ( x + y )2 - 3( x + y ) - 35

= 52 - 3.5 - 35

= 25 - 15 - 35 = -25

2. 4x2 + y2 + 8x - 4xy - 4y + 100

= ( 4x2 - 4xy + y2 + 8x - 4y + 4 ) + 96

= [ ( 4x2 - 4xy + y2 ) + ( 8x - 4y ) + 4 ] + 96

= [ ( 2x - y )2 + 2.( 2x - y ).2 + 22 ] + 96

= ( 2x - y + 2 )2 + 96

= ( 4 + 2 )2 + 96

= 62 + 96 = 36 + 96 = 132

24 tháng 9 2024

a; A = (7\(x\) + 5)2 + (3\(x-5\))2 - (10 - 6\(x\)).(5 + 7\(x\)

   A = 49\(x^2\) + 70\(x\) + 25 + 9\(x^2\) - 30\(x\) + 25 - 50 - 70\(x\) + 30\(x\) + 42\(x^2\)

   A = (49\(x^2\) + 9\(x^2\) + 42\(x^2\)) + (70\(x-70x\)) - (30\(x\) - 30\(x\)) + (25+25-50)

   A =  100\(x^2\) + 0 + 0 + (50 - 50)

   A = 100\(x^2\) + 0 + 0 + 0

   A = 100\(x^2\) 

Thay  \(x=-2\) vào A = 100\(x^2\) ta có:

  A = 100.(-2)2

  A = 100.4

 A =  400.

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

3 tháng 11 2016

Câu 1:

(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)

<=> (4x- 12x +9) - 4 . (X2 - 9) + 11 =0

<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0

<=> -12x + 46 = 0

<=> X = 23/6

3 tháng 11 2016

Câu 2: 

x2 + 4x - y2 + 4y = 0

<=> (x2 - y2) + (4x + 4y) = 0

<=> (x + y) (x - y) + 4 (x + y) = 0

<=> (x+y) (x - y + 4) = 0

a)

*Biểu thức A

Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=x^2+y^2+1+2x-2y-2xy+36\)

\(=\left(x-y+1\right)^2+36\)

Thay x-y=7 vào biểu thức \(A=\left(x-y+1\right)^2+36\), ta được:

\(A=\left(7+1\right)^2+36=8^2+36=100\)

Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-y=7

*Biểu thức B

Ta có: \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)

\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^2\)

\(=\left(x-y\right)^2\cdot\left(x-y-1\right)\)

Thay x-y=7 vào biểu thức \(B=\left(x-y\right)^2\cdot\left(x-y-1\right)\), ta được:

\(B=7^2\cdot\left(7-1\right)^2=49-36=13\)

Vậy: giá trị của biểu thức \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) tại x-y=7 là 13

b) Ta có: \(C=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\cdot\left(x+2y\right)\cdot1+1+9\)

\(=\left(x+2y-1\right)^2+9\)

Thay x+2y=5 vào biểu thức \(C=\left(x+2y-1\right)^2+9\), ta được:

\(C=\left(5-1\right)^2+9=4^2+9=25\)

Vậy: 25 là giá trị của biểu thức \(C=x^2+4y^2-2x+10+4xy-4y\) tại x+2y=5

7 tháng 9 2021

\(x^2+4y^2-5x+10y-4xy+20\)

\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)

\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)

\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được : 

\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)

7 tháng 9 2021

\(B=x^2-2xy-2x+2y+y^2\)

\(=x^2-2xy+y^2-2\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được : 

\(=1-2=-1\)

10 tháng 7 2016

Bài 1:

  • a,(2+xy)^2=4+4xy+x^2y^2
  • b,(5-3x)^2=25-30x+9x^2
  • d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1