Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; A = (7\(x\) + 5)2 + (3\(x-5\))2 - (10 - 6\(x\)).(5 + 7\(x\))
A = 49\(x^2\) + 70\(x\) + 25 + 9\(x^2\) - 30\(x\) + 25 - 50 - 70\(x\) + 30\(x\) + 42\(x^2\)
A = (49\(x^2\) + 9\(x^2\) + 42\(x^2\)) + (70\(x-70x\)) - (30\(x\) - 30\(x\)) + (25+25-50)
A = 100\(x^2\) + 0 + 0 + (50 - 50)
A = 100\(x^2\) + 0 + 0 + 0
A = 100\(x^2\)
Thay \(x=-2\) vào A = 100\(x^2\) ta có:
A = 100.(-2)2
A = 100.4
A = 400.
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
Câu 1:
(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)
<=> (4x2 - 12x +9) - 4 . (X2 - 9) + 11 =0
<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0
<=> -12x + 46 = 0
<=> X = 23/6
a)
*Biểu thức A
Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=x^2+y^2+1+2x-2y-2xy+36\)
\(=\left(x-y+1\right)^2+36\)
Thay x-y=7 vào biểu thức \(A=\left(x-y+1\right)^2+36\), ta được:
\(A=\left(7+1\right)^2+36=8^2+36=100\)
Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-y=7
*Biểu thức B
Ta có: \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=\left(x-y\right)^2\cdot\left(x-y-1\right)\)
Thay x-y=7 vào biểu thức \(B=\left(x-y\right)^2\cdot\left(x-y-1\right)\), ta được:
\(B=7^2\cdot\left(7-1\right)^2=49-36=13\)
Vậy: giá trị của biểu thức \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) tại x-y=7 là 13
b) Ta có: \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\cdot\left(x+2y\right)\cdot1+1+9\)
\(=\left(x+2y-1\right)^2+9\)
Thay x+2y=5 vào biểu thức \(C=\left(x+2y-1\right)^2+9\), ta được:
\(C=\left(5-1\right)^2+9=4^2+9=25\)
Vậy: 25 là giá trị của biểu thức \(C=x^2+4y^2-2x+10+4xy-4y\) tại x+2y=5
\(x^2+4y^2-5x+10y-4xy+20\)
\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)
\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)
\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được :
\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)
\(B=x^2-2xy-2x+2y+y^2\)
\(=x^2-2xy+y^2-2\left(x-y\right)\)
\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được :
\(=1-2=-1\)
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
1. x( x - 3 ) + y( y - 3 ) + 2xy - 35
= x2 - 3x + y2 - 3y + 2xy - 35
= ( x2 + 2xy + y2 ) - ( 3x + 3y ) - 35
= ( x + y )2 - 3( x + y ) - 35
= 52 - 3.5 - 35
= 25 - 15 - 35 = -25
2. 4x2 + y2 + 8x - 4xy - 4y + 100
= ( 4x2 - 4xy + y2 + 8x - 4y + 4 ) + 96
= [ ( 4x2 - 4xy + y2 ) + ( 8x - 4y ) + 4 ] + 96
= [ ( 2x - y )2 + 2.( 2x - y ).2 + 22 ] + 96
= ( 2x - y + 2 )2 + 96
= ( 4 + 2 )2 + 96
= 62 + 96 = 36 + 96 = 132