K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)

\(\Leftrightarrow x^2-2x+1< 0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow x^2-5x-x+4>0\)

\(\Leftrightarrow x^2-6x+4>0\)

\(\Leftrightarrow\left(x-3\right)^2>5\)

hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)

26 tháng 5 2017

a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)

Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:

\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp 

ra \(x=8;y=-8\)

em xin lỗi chớ em mới lớp 6 thui anh Đức ạ

24 tháng 1 2016

Cho x,y>0 va x+y=1.tim GTNN A= 1/(x^2+y^2) +1/xy

5 tháng 8 2017

b) \(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\\left(x+1\right)^2+3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+1\right)^2-6y=6\left(1\right)\\2\left(x-1\right)^2+6y=2\left(2\right)\end{matrix}\right.\)

Cộng theo vế 2 pt trên, ta có

\(3\left(x+1\right)^2+2\left(x-1\right)^2=8\)

\(\Leftrightarrow5x^2+2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-1\end{matrix}\right.\)

Từ đó dễ dàng tìm được y.

5 tháng 8 2017

a) \(\left\{{}\begin{matrix}\left(x+y\right)^2=50\left(1\right)\\x+5\left(y-1\right)=xy\left(2\right)\end{matrix}\right.\)

Ta viết lại pt (2)

\(x+5\left(y-1\right)=xy\)

\(\Leftrightarrow\left(x-xy\right)+5\left(y-1\right)=0\)

\(\Leftrightarrow x\left(1-y\right)-5\left(1-y\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(1-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)

- TH1: Thay x = 5 vào pt (1) tìm được \(\left[{}\begin{matrix}y=-5+5\sqrt{2}\\y=-5-5\sqrt{2}\end{matrix}\right.\)

- TH2: Thay y = 1 vào pt (1) tìm được \(\left[{}\begin{matrix}x=-1+5\sqrt{2}\\x=-1-5\sqrt{2}\end{matrix}\right.\)