Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)
\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)
\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)
\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)
\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)
Đến đây dễ rồi bạn tự làm tiếp nhê
Ta có:
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\) và x+y=2
Xét dấu =
Dấu ''='' xảy ra khi và chỉ khi
x=y=1
Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1
Hết.
Em mới học lớp 7 nên ko biết đúng ko
Lời giải:
Quy nạp. Ta chứng minh tổng quát rằng \(a^k+b^k=x^k+y^k(*)\) với \(k\in\mathbb{N}\)
Với $k=1,k=2$: hiển nhiên theo giả thiết.
............
Giả sử điều \((*)\) đúng tới $k=n$. Ta sẽ chứng minh nó cũng đúng với $k=n+1$. Tức là \(a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)
Thật vậy:
\(a^{n+1}+b^{n+1}=(a^n+b^n)(a+b)-a^nb-ab^n\)
\(=(x^n+y^n)(x+y)-ab(a^{n-1}+b^{n-1})\)
\(=(x^n+y^n)(x+y)-ab(x^{n-1}+y^{n-1})\)
Vì \(a^2+b^2=x^2+y^2\Rightarrow (a+b)^2-2ab=(x+y)^2-2xy\)
Mà $a+b=x+y$ nên \(2ab=2xy\Rightarrow ab=xy\)
\(\Rightarrow a^{n+1}+b^{n+1}=(x^n+y^n)(x+y)-xy(x^{n-1}+y^{n-1})=x^{n+1}+y^{n+1}\)
Quy nạp hoàn thành. Ta luôn có $(*)$. Thay $k=2018$ ta có đpcm.
a)ko bít đề bắt làm j
b)Px=x(1+x+x2+...+x2015+x2018)
Px=x+x2+...+x2017
Px-P=(x+x2+...+x2017)-(1+x+x2+...+x2015+x2018)
P(x-1)=x2017-1
P=(x2017-1)/(x-1)
x2017+x2018+1
=x2017.(x+x2)+1
=>x2017.(x+x2)\(⋮\)x2+x
Mà 1\(⋮\)1
=>x2017.(x+x2)+1\(⋮\)x2+x+1
Đây là cách nghĩ của em ,em ms lớp 6 nên sai sót j a đừng tích sai e nha
Chúc a học tốt
\(x^{2017}+x^{2018}+1=\left(x^{2016}+x^{2017}+x^{2018}\right)-\left(x^{2016}-1\right)\)
\(=x^{2016}\left(x^2+x+1\right)-\left(x^{2016}-1\right)\)
Ta có: \(x^{2016}-1=x^{3.672}-1=\left(x^3\right)^{672}-1^{672}⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\)
mà \(x^{2016}\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)
\(\Rightarrow x^{2017}+x^{2018}+1⋮\left(x^2+x+1\right)\)
\(x^{2018}+y^{2018}\ge x^{2017}+y^{2017}\)
\(\Rightarrow\left(x+y\right)\left(x^{2018}+y^{2018}\right)\ge\left(x+y\right)\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)\ge2\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)-\left(x+y\right)\left(x^{2017}+y^{2017}\right)\ge0\)
\(\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\)\(\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\x^{2017}-y^{2017}\ge0\end{matrix}\right.\)
\(\Rightarrow x\ge y\)
Vậy với \(x\ge y\Rightarrowđpcm\)
Bạn giải thích bước (x-y)(\(^{x^{2017}-y^{2017}}\)) \(\ge\)0 đi, mk chưa hiểu lắm .