K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

x + y = 17 => \(\left(x+y\right)^2=17^2\Rightarrow x^2+2xy+y^2=289\Leftrightarrow x^2+y^2+2.12=289\)

\(\Leftrightarrow x^2+y^2+24=289\Rightarrow x^2+y^2=289-24=265\)

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

3 tháng 7 2017

a,Từ x + y = 2\(\Rightarrow\)x2 + 2xy + y2 = 4

\(\Rightarrow\)2xy= 4 - (x2 + y2 ) = 4 - 10 = -6

\(\Rightarrow\)xy = -3

Ta lại có (x+y)3= x3+3x2y + 3xy2+y3

\(\Rightarrow\)x3+y3=(x+y)3-3xy(x+y)=8+9.2=26

b, Đây là cách giải tổng quát của câu a:

x3+y3=(x+y)(x2-xy+y2)=a(b-xy) (1)

Lại có: x+y=a\(\Rightarrow\)x2+2xy+y2=a2

\(\Rightarrow\)xy=\(\dfrac{a^2-\left(x^2+y^2\right)}{2}=\dfrac{a^2-b}{2}\)(2)

Từ (1) và (2) ta dễ dàng tính được:

x3+y3=\(\dfrac{a\left(3b-a^2\right)}{2}\)

Chúc các bạn học tốtbanh

3 tháng 7 2017

a) x + y = 2 => y = 2 - x

x2 + y2 = 10

=> x2 + (2 - x)2 = 10

<=> x2 + 4 - 4x + x2 = 10

<=> 2x2 - 4x - 6 = 0

<=> x = 3 -> y = -1

hoặc x = -1 -> y = 3

TH1: x3 + y3 = 33 + (-1)3

TH2: x3 + y3 = (-1)3 + 33

3 tháng 7 2017

cho mk sửa lại đề chút nhoa:

b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b

3 tháng 7 2017

a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)

Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)

=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)

b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)

\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)

Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)

\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)

9 tháng 9 2018

a) xy = b \(\Rightarrow\)2xy = 2b ; x + y = a \(\Rightarrow\)( x + y )2 = a2 \(\Rightarrow\)x2 + y2 + 2xy = a2 \(\Rightarrow\)x2 + y2 = a2 - 2b

b) x3 + y3 = ( x + y ) . ( x2 - xy + y2 ) = a . ( a2 - 2b - b ) = a . ( a2 - 3b ) = a3 - 3ab

21 tháng 11 2022

Bài 1: Sửa đề: x^2-9y^2=8xy

=>x^2-8xy-9y^2=0

=>(x-9y)(x+y)=0

=>x=9y hoặc x=-y(loại)

\(A=\dfrac{x+y}{x-y}=\dfrac{9y+y}{9y-y}=\dfrac{10}{8}=\dfrac{5}{4}\)

12 tháng 7 2017

b) \(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)

\(=\left(x-y\right)\left(1-xy\right)-3xy\)

\(=x-x^2y-y\)