K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

\(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Thay \(x+y=17,xy=12\)vào ta có

\(17^2-2.12=265\)

16 tháng 9 2020

a) Ta có x + y = 25

=> (x + y)2 = 625

=> x2 + y2 + 2xy = 625

=> x2 + y2 + 10 = 625

=> x2 +y2 = 615

b) Ta có x + y = 3

=> (x + y)3 = 27

=> x3 + 3x2y + 3xy2 + y3 = 27

=> x3 + y3 + 3xy(x + y) = 27

=> x3 + y3 + 9xy = 27 

Lại có x + y = 3

=> (x + y)2 = 9

=> x2 + y2 + 2xy = 9

=> 2xy = 4

=> xy = 2

Khi đó x3 + y3 + 9xy + 27

=> x3 + y3 + 18 = 27

=> x3 + y3 = 9

c) Ta có x - y = 5

=> (x - y)2 = 25

=> x2 + y2 - 2xy = 25

=> 2xy = -10

=> xy = -5

Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50

16 tháng 9 2020

Bài 4.

a) x2 + y2 = x2 + 2xy + y2 - 2xy

= ( x2 + 2xy + y2 ) - 2xy

= ( x + y )2 - 2xy

= 252 - 2.136

= 625 - 272

= 353

b) x + y = 3

⇔ ( x + y )2 = 9

⇔ x2 + 2xy + y2 = 9

⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )

⇔ 2xy = 4

⇔ xy = 2

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y )

= 33 - 3.2.3

= 27 - 18

= 9 

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)

=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)

8 tháng 9 2016

Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):

\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)

                                                  \(\Rightarrow\) \(x-y=0\)

                                                  \(\Rightarrow\left(x-y\right)^3=0^3=0\)

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

28 tháng 7 2016

\(x^3+y^3=\left(x+y\right).\left(x^2-xy+y^2\right)=1.\left(x^2+y^2+2xy-3xy\right)\)

\(=1^2-3xy\)

=1+3=4

câu b tương tự

28 tháng 6 2017

Do \(x-y=2\Rightarrow\left(x-y\right)^2=4\)

\(\Rightarrow x^2-2xy+y^2=4\)\(\Rightarrow x^2+y^2=4+2xy=4+2.120=244\)

23 tháng 10 2017

Theo bài ra ta có:

\(x^2y+xy^2+x+y=2010\)

\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Rightarrow\left(x+y\right)\left(xy+1\right)=2010\)

\(\Rightarrow\left(x+y\right)\left(11+1\right)=2010\)

\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=2010\div12=167,5\)

Ta có: \(A=x^4+y^4=\left(x^2\right)^2+2x^2y^2+\left(y^2\right)^2-2x^2y^2\)

\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2\times11^2\)

\(\Rightarrow\left[\left(167,5\right)^2-2.11\right]^2-245\)

\(\Rightarrow\left(28056,25-22\right)^2-245=785918928,0625\)