Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đề bài ta có : x^3+y^3+11xy=(x+y)(x^2-xy+y^2)+11xy
=11/3(----------------)+11xy
=11x^2-11xy+11y^2/3 +11xy
=-------------------------- +33xy/3
=11(x^2-xy+y^2+3xy)/3
=11(x^2+2xy+y^3)/3
=11(x+y)^2/3
=11(11/3)^2 /3
=1331/27
xong rồi đó bạn, có gì thắc mắc cứ hỏi , tôi sẽ tư vấn giùm
nhớ tích nếu thấy hay nhé !!!!! chúc bn hk tốt
\(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1\)
\(=-2\)
3, A=(x-3)^2+(x-11)^2
\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)
\(\Rightarrow\)(X^2-9)+(X^2-121)
Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0
\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121
\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130
Dấu = xảy ra khi : X=0
Vậy : Min A = -130 khi x=0
Mình mới lớp 7 sai thì thôi nhé
1. x( x - 3 ) + y( y - 3 ) + 2xy - 35
= x2 - 3x + y2 - 3y + 2xy - 35
= ( x2 + 2xy + y2 ) - ( 3x + 3y ) - 35
= ( x + y )2 - 3( x + y ) - 35
= 52 - 3.5 - 35
= 25 - 15 - 35 = -25
2. 4x2 + y2 + 8x - 4xy - 4y + 100
= ( 4x2 - 4xy + y2 + 8x - 4y + 4 ) + 96
= [ ( 4x2 - 4xy + y2 ) + ( 8x - 4y ) + 4 ] + 96
= [ ( 2x - y )2 + 2.( 2x - y ).2 + 22 ] + 96
= ( 2x - y + 2 )2 + 96
= ( 4 + 2 )2 + 96
= 62 + 96 = 36 + 96 = 132
Câu 1:
(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)
<=> (4x2 - 12x +9) - 4 . (X2 - 9) + 11 =0
<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0
<=> -12x + 46 = 0
<=> X = 23/6
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)