Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Có: \(x^4+y^4\ge2x^2y^2\)
\(\Leftrightarrow2\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\ge\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Suy ra: \(x^4+y^4\ge\frac{1}{8}\)
Vậy min M=1/8 khi \(x=y=\frac{1}{2}\)
Lời giải:
ĐK: $x\neq 2019$
PT $\Rightarrow A(x-2019)^2=2019x$
$\Leftrightarrow Ax^2-x(4038A+2019)+A.2019^2=0(*)$
Vì biểu thức $A$ xác định nên PT $(*)$ có nghiệm.
$\Rightarrow \Delta=(4038A+2019)^2-4A^2.2019^2\geq 0$
$\Leftrightarrow 2019^2(2A+1)^2-4A^2.2019^2\geq 0$
$\Leftrightarrow (2A+1)^2-(2A)^2\geq 0$
$\Leftrightarrow 4A+1\geq 0$
$\Leftrightarrow A\geq -\frac{1}{4}$
Vậy GTNN của $A$ là $\frac{-1}{4}$. $A$ không có GTLN
\(x^4+y^4=\left(a^2+b^2\right)^2\)
\(=x^4+y^4+2\left(xy\right)^2\)
\(x^2-y=y^2-x\)
=>x^2-y^2-y+x=0
=>(x-y)(x+y)+(x-y)=0
=>(x-y)(x+y+1)=0
=>x+y=-1
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]-6x^2y^2\)
\(=-1+3xy+3xy\left[1-2xy\right]-6x^2y^2\)
=-1+6xy-12x^2y^2
\(x^4+x^2y^2+y^4\)
\(=x^4+2x^2y^2+y^4-x^2y^2\)
\(=\left(x^2+y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
9x2+6x+25= (3x)2+2.3x.1+1-1+25
= (3x+1)2+24
Vì (3x+1)2 luôn > hoặc = 0
Nên (3x+1)2+24 luôn > hoặc =24
Vậy GTNN của 9x2+6x+25 bằng 24 khi (3x+1)2=0
<=> x= \(\frac{-1}{3}\)
Câu GTLN bạn làm tương tự câu tìm giá trị nhỏ nhất khác nhau một chút là tìm GTLN thì đặt dấu - ra ngoài
\(x+y=2\Rightarrow\left(x+y\right)^2=2^2=4\)
\(\left(x+y\right)^2=x^2+2xy+y^2=4\)
\(=x^2+2.2+y^2=4\)
\(\Rightarrow x^2+y^2+4=4\Rightarrow x^2+y^2=0\)
:)
x+y=2⇒(x+y)2=22=4
(x+y)2=x2+2xy+y2=4
=x2+2.2+y2=4
⇒x2+y2+4=4⇒x2+y2=0
Trần công Chánh | hs tích cực |
Lê Thị Hồng Thêm | hs chuyên cần |
Phan Thị Thùy Ngân | hs siêng năng |
\(M=\left(x^2+y^2\right)^2-2x^2y^2\)
\(M=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
Áp dụng BĐT Cauchy:
\(x+y\ge2\sqrt{xy}\)\(\Rightarrow xy\le\frac{1}{4}\)
\(\Rightarrow M\ge\left[1-\frac{1}{2}\right]^2-2.\frac{1}{16}\)\(=\frac{1}{8}\)
\(M_{min}=\frac{1}{8}\Leftrightarrow x=y=\frac{1}{2}\)
dễ Cm được x² +y² ≥ (x+y)²/2
<=> x² +y² ≥ 1/2(x² +y²) + xy
<=> 1/2(x² +y²) -xy ≥ 0
<=> 1/2(x-y)² ≥ 0 ( luôn đúng )
vậy x² + y² ≥ (x+y)²/2 = 1/2
tương tự thì
x^4 + y^4 ≥ (x² +y²)²/2 ≥ (1/2)²/2 = 1/8
vậy x^4 + y^4 ≥ 1/8
dấu = xảy ra <=> x=y=1/2