K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2018

Ta có : \(xy+yz+xz=0\)

\(\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=0\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

C/m 1 bài toán phụ

Cho \(a+b+c=0\) . CM : \(a^3+b^3+c^3=0\)

Do \(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\)

Lại có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)

Từ bài toán phụ trên mà ta lại có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)

Ta lại có : \(M=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=xyz.\dfrac{3}{xyz}=3\)

Vậy \(M=3\)

Học tốt nhé bạn haha

18 tháng 11 2018

\(x,y,z\ne0\Rightarrow xyz\ne0\) thì mới được áp dụng nhé bạn :D

NV
2 tháng 3 2019

Do \(xyz\ne0\) ta có:

\(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=0\Leftrightarrow xyz\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)=0\Leftrightarrow x+y+z=0\)

Lại có: \(x^3+y^3+z^3=x^3+y^3+3x^2y+3y^2x-3xy\left(x+y\right)+z^3\)

\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)+3xyz=3xyz\)

Vậy nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)

\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=\dfrac{x^3}{xyz}+\dfrac{y^3}{xyz}+\dfrac{z^3}{xyz}=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)

18 tháng 3 2017

\(\left\{{}\begin{matrix}xy+yz+xz=0\\x,y,z\ne0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}=0\)\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{y^3}+\dfrac{1}{x^3}=\dfrac{3}{zyz}\)

\(A=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{3xyz}{xyz}=3\)

NV
11 tháng 12 2018

Để M xác định thì \(x,y,z\ne0\)

\(xy+xz+yz=0\Rightarrow\left\{{}\begin{matrix}\dfrac{xy}{z}+x+y=0\\\dfrac{xz}{y}+x+z=0\\\dfrac{yz}{x}+y+z=0\end{matrix}\right.\)

Cộng vế với vế ta được:

\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}+2\left(x+y+z\right)=0\)

\(\Leftrightarrow M+2.\left(-1\right)=0\Rightarrow M=2\)

12 tháng 12 2018

Ta có :

\(xy+yz+xz=0\\ \Rightarrow\left[{}\begin{matrix}xy=-xz-yz=-z\left(x+y\right)\\yz=-xy-xz=-x\left(y+z\right)\\xz=-xy-yz=-y\left(x+z\right)\end{matrix}\right.\)

\(M=\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}=\dfrac{-z\left(x+y\right)}{z}+\dfrac{-y\left(x+z\right)}{y}+\dfrac{-x\left(y+z\right)}{x}\\ =-\left(x+y\right)-\left(x+z\right)-\left(y+z\right)=-x-y-x-z-y-z\\ =-2\left(x+y+z\right)=\left(-2\right)\cdot\left(-1\right)=2\)

\(\Rightarrow M=2\)

20 tháng 9 2017

Áp dụng công thức a3+b3+c3=3abc

Bài làm

Đặt \(\dfrac{1}{x}\)= a, \(\dfrac{1}{y}\)= b, \(\dfrac{1}{z}\)= c

vì a+b+c = 0 nên a3+b3+c3=3abc

S= \(\dfrac{yz}{x^2}\)+ \(\dfrac{xz}{y^2}\)+ \(\dfrac{xy}{z^{ }2}\)

=\(\dfrac{xyz}{x^{ }3}\)+\(\dfrac{xyz}{y^{ }3}\)+\(\dfrac{xyz}{z^{ }3}\) = xyz(\(\dfrac{1}{x^3}\)+\(\dfrac{1}{y^{ }3}\)+\(\dfrac{1}{z^{ }3}\))

= xyz ( a3+b3+c3 )

= xyz \(\times\)3abc = xyz \(\times\) \(\dfrac{3}{xyz}\) = 3

24 tháng 9 2018

C/m: 1 bài toán nhỏ :

Cho \(a+b+c=0\) . CM : \(a^3+b^3+c^3=3abc\)

Do \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

Lại có : \(a^3+b^3+c^3\)

\(=\left(a+b\right)^3-3a^2b-3b^2a+c^3\)

\(=-c^3-3ab\left(a+b\right)+c^3\)

\(=-3ab\left(a+b\right)\)

\(=-3ab.\left(-c\right)\)

\(=3abc\)

Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) , áp dụng từ bài toán trên , ta được :

\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=3.\dfrac{1}{x}.\dfrac{1}{y}.\dfrac{1}{z}=\dfrac{3}{xyz}\)

Lại có : \(P=\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{xz}{y^2}\)

\(=\dfrac{xyz}{z^3}+\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}\)

\(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

\(=xyz.\dfrac{3}{xyz}\)

\(=3\)

Vậy \(P=3\)

:D

8 tháng 9 2017

\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)

\(=\dfrac{x^3+y^3+z^3-3xyz}{xyz}+\dfrac{3xyz}{xyz}\)

\(=\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{xyz}+3\)

\(=3\)

Vậy P = 3