K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

bài ơi đề sai rồi kìa

\(\left(x^3+y^3-x^3y^3\right)^3+27x^6y^6\)

Thay xy=x+y vao biểu thức trên ta được

\(\left(x^3+y^3-x^3y^3\right)^3+27x^6y^6\)

\(=\left(x^3+y^3-\left(x+y\right)^3\right)^3+27x^6y^6\)

\(=\left(3xy\left(x+y\right)\right)^3+27x^6y^6\)

\(=\left(-3x^2y^2\right)^3+27x^6y^6\)

\(=-27x^6y^6+27x^6y^6=0\)

22 tháng 1 2017

đề bài sai bét

20 tháng 1 2017

= 0 nha bạn 

( Xin lỗi mình không biết cách làm nhưng gõ 0 thì đúng) 

21 tháng 12 2016

Đặt \(z=x+y=xy\)

Suy ra từ \(x+y=xy\Rightarrow\left(x+y\right)^3=x^3y^3=z^3\)

Lại có: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=z^3-3z^2\)

\(\Rightarrow A=-27z^6+27z^6=0\)

3 tháng 1 2018

Ta có:

x+y=xy

(x+y)3=x3y3

x3+y3-x3y3+3x2y+3xy2=0

x3+y3-x3y3+3xy(x+y)=0

x3+y3-x3y3=-3x2y2

(x3+y3-x3y3)3=-27x6y6

A=-27x6y6+27x6y6

=> A=0

Bài 1: a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + cab) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2cd) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và be) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và bf) Cho x + y = 1, xy= -1. Tính...
Đọc tiếp

Bài 1: 
a) Cho a + b + c = 9, a+ b+ c= 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y= b, x+ y= c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x- ytheo a và b
e) Cho x + y = a, x+ y= b. Tính giá trị của biểu thức E = x3 + ytheo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x+ y2 , x+ y3 , (x2 - y2)2 , x+ y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x+ y2, x3 - y3, (x2- y2)2, x- y6
h) Cho a + b + c = 0, a2+ b+ c= 1. Tính giá trị của biểu thức H = a+ b+ c4
i) Cho a + b = a+ b=1. Chứng minh: a+ b= a4+ b4
j) Cho x + y = a + b; x+ y= a+ b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a+ b= 1; c+ d= 1; ac + bd = 0. CMR: ab + cd = 0 
 

3
21 tháng 10 2018

1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)

\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)

26 tháng 9 2020

a,\(a+b+c=9\)

\(\Rightarrow\left(a+b+c\right)^2=81\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)

Vì \(a^2+b^2+c^2=141\)

\(\Rightarrow2ab+2bc+2ca=-60\)

\(\Rightarrow2\left(ab+bc+ca\right)=-60\)

\(\Rightarrow ab+bc+ca=-30\)

Vậy ...

19 tháng 7 2019

Đề a,b bạn ghi mik ko hiểu

c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)

Mà  \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)

9 tháng 6 2016

\(C=\frac{x^3}{8}+\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}=\left(\frac{x}{2}\right)^3+3\cdot\left(\frac{x}{2}\right)^2\cdot\left(\frac{y}{3}\right)+3\left(\frac{x}{2}\right)\left(\frac{y}{3}\right)^2+\left(\frac{y}{3}\right)^3=\left(\frac{x}{2}+\frac{y}{3}\right)^3\)

Với x=-8; y = 6 thì: \(C=\left(-\frac{8}{2}+\frac{6}{3}\right)^3=\left(-4+2\right)^3=-8.\)