K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

ko hỉu câu hỏi . viết hẳn hoi mình mới à dc batngo

 

11 tháng 12 2016

đề thầy ra thế mà

 

7 tháng 6 2018

Ta có :

3x + y chia hết cho 17

Suy ra ( 3x + 2y)9 = 27x + 18y cũng chia hết cho 17 (1)

Mà: (27x + 18y) - (10x + y) = 17x - 17y chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh.

20 tháng 3 2017

\(\hept{\begin{cases}\left(x-y\right)⋮17\Rightarrow\left(x-y\right)=17.p...voi...P\in Z\\A-B=x^2y-xy^2=xy\left(x-y\right)=17.p.\left(xy\right)⋮17\Rightarrow dccm\Leftrightarrow dpcm\end{cases}}\)

5 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\)  =>   \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

Vậy ...

a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ

\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

24 tháng 2 2017

a ) \(x+4y⋮3\)

\(\Leftrightarrow x+y+3y⋮3\)

Mà \(3y⋮3\Rightarrow x+y⋮3\) (1)

\(10x+y=9x+\left(x+y\right)\)

Vì \(9x⋮3\) \(;\left(x+y\right)⋮3\) ( theo (1) ) \(\Rightarrow9x+\left(x+y\right)⋮3\)

Hay \(10x+y⋮3\) (đpcm)

Các ý khác tương tự !!!!!!!

22 tháng 10 2017

đề thiếu ak bạn 

22 tháng 10 2017

Không thiếu chữ nào hết! 

6 tháng 3 2020

Đặt \(A=6x+10y+z\)\(B=3x-2y+4z\)

Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)

\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)

\(\Rightarrow A+5B⋮21\)(1)

+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )

+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)

Vậy ta có điều phải chứng minh.

6 tháng 3 2020

Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)

Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)

      \(=24x+40y+4z-3x+2y-4z\)

      \(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)

      \(=21x+42y=21.\left(x+2y\right)⋮21\)

  mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)

Điều ngược lại:

Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)

Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)

      \(=15x-10y+20z+6x+10y+z\)

      \(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)

      \(=21x+21z=21.\left(x+z\right)⋮21\)

  mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)

Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)