Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-2+\frac{1}{4x^2}+\left(2x\right)^2+y^2=4\)
\(\left(\left(2x\right)^2-\frac{1}{\left(2x\right)^2}\right)^2+\left(\left(2x\right)-y\right)^2=4-2\left(2x\right)y\)
\(VT\ge0\) đẳng thức khi: 2x=+-1; 2x=y;
\(\Rightarrow4-4xy\ge0\Rightarrow xy\le1\)
DS: x=+-1/2; y+-1
Cho 2 số thực x,y thỏa mãn x>y và x.y= 2
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{x^2+y^2}{x-y}\)
Ta có: \(A=\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{4}{x-y}\)
Áp dụng BĐT Cô-si cho 2 số không âm, ta có:
\(A=\left(x-y\right)+\frac{4}{\left(x-y\right)}\ge2\sqrt{\left(x-y\right)\frac{4}{x-y}}=4\)
Dấu bằng xảy ra khi \(\left(x;y\right)=\left(\sqrt{3}+1;\sqrt{3}-1\right);\left(1-\sqrt{3};-1-\sqrt{3}\right)\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
\(8x^2+y^2+\frac{1}{4x^2}=4\) => \(x^2.\left(8x^2+y^2+\frac{1}{4x^2}\right)=4x^2\)
<=> \(8x^4+\left(xy\right)^2+\frac{1}{4}=4x^2\Leftrightarrow\left(xy\right)^2=-8x^4+4x^2-\frac{1}{4}\)
<=> \(\left(xy\right)^2=-8\left(x^4-2.x^2.\frac{1}{4}+\frac{1}{16}\right)+\frac{1}{2}-\frac{1}{4}=-8\left(x^2-\frac{1}{4}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
<=> \(-\frac{1}{2}\le xy\le\frac{1}{2}\)
Dấu "=" xảy ra khi x2 = 1/4 <=> x = 1/2 hoặc x = -1/2
Vậy xy nhỏ nhất bằng -1/2 tại x = -1/2; y = 1 hoặc x = 1/2 ; y = -1
nhìn giống toán 8 phết hi ^_^