K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

x3+y3=x3+3x2y+3xy2+y2+3xy-3x2y-3xy2

=(x+y)3+3xy.(1-x-y)

=(x+y)3+3xy.[1-(x+y)]

=13+3xy.(1-1)

=1

11 tháng 7 2017

13 - 3xy . (1-1) = 1 

>_< chúc bn học tốt

11 tháng 8 2017

X+ Y= X3 + 3X2Y + 3 XY2+ Y2+ 3XY - 3 X2Y- 3XY2

=(x + y ) + 3xy. ( 1 - x - y )

=( x + y)3 + 3xy . [ 1 - (x - y) ]

= 13 + 3xy. ( 1-1)

=1

mik cũng ko chắc nữa nhé

11 tháng 8 2017

Ta có :x3 +y3 +3xy=(x+y)(x2 -xy+y2)+3xy

mà x+y=1

=>x2 -xy+y2+3xy=x+2xy+y2 =(x+y)2=12 =1

15 tháng 7 2016

 \(P=x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1^3=1\)

30 tháng 6 2018

x^3+ y^3+ 3xy

=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2  -xy + y^2 + 3xy

=x^2 + 2xy + y^2

=(x+y)^2 =1

=> x^3+ y^3+ 3xy=1

1 tháng 7 2018

còn câu b ai giúp m vs

11 tháng 7 2015

Đăng bài lên để nhờ mọi người giải hộ mà không thấy ai giải hộ cả. Giờ mình cũng đã tìm ra cách giải rồi (không biết có đúng không)

* Theo đề bài ra ta có:

x^2 - y = y^2 - x <=> x^2 - y^2 = y - x <=> (x - y)*(x + y) = y - x <=> x + y =  (y - x)/(x - y) (điều kiện x - y # 0)

<=> x + y = -(y - x)/(y - x) = -1 (điều kiện x # y).

<=> x = -y. Ta có 2 trường hợp xảy ra:

T/h1: x = y, khi đó A = x^3 + x^3 + 3x*x(x^2 + x^2) + 6x^2*x^2(x + x) = 2x^3 + 3x^2 * 2x^2 + 6x^4 * 2x = 2x^3 + 6x^4 + 12x^5;

T/h2: x =-y, khi đó A =  x^3 + (-x)^3 + 3x*(-x)(x^2 + (-x)^2) + 6x^2*(-x)^2(x + (-x))

                               = x^3 - x^3 - 3x^2(x^2 + x^2) + 6x^2*x^2(x - x) = -6x^4 + 6x^4 * 0 = -6x^4

12 tháng 7 2024

13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))

1 = \(x^3\)+y3+3\(xy\)

12 tháng 7 2024

13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))

1 = \(x^3\) - y3 - 3\(xy\)

9 tháng 9 2021

\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)

Bài 1: 

\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)

\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)

\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)

\(=2x^2+4xy-7y^2\)

12 tháng 7 2024

12 tháng 7 2024

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)

15 tháng 8 2018

a)  \(x+y=1\)

=>   \(\left(x+y\right)^3=1\)

<=>  \(x^3+y^3+3xy\left(x+y\right)=1\)

<=>  \(x^3+y^3+3xy=1\)

b)  \(x-y=1\)

=>  \(\left(x-y\right)^3=1\)

<=>  \(x^3-y^3-3xy\left(x-y\right)=1\)

<=>  \(x^3-y^3-3xy=1\)