Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ x2 + 2xy + 7(x+y) + 7y2 + 10 = 0 => (x + y)2 + 7 .(x + y) + 6y2 + 10 = 0 (*)
S = x+ y + 1 => x + y = S - 1
(*) => (S - 1)2 + 7.(S - 1) + 6y2 + 10 = 0
=> S2 + 5S + 4 = -6y2 \(\le\) 0 với mọi y => S2 + 5S + 4 \(\le\) 0
=> (S + 4)(S + 1) \(\le\) 0 => S + 4 và S + 1 trái dấu
Giải 2 trường hợp => -4 \(\le\) S \(\le\) -1
=> GTNN của S bằng -4 khi y = 0 và x = -5
GTLN của S bằng -1 khi y = 0 và x = -2
Ta có
x2 + 2y2 + 2xy + 7x + 7y + 10 = 0
<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0
<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0
<=> A2 + 5A + y2 + 4 = 0
<=> y2 = - 4 - 5A - A2 \(\ge0\)
<=> \(-4\le A\le-1\)
Vậy GTLN là -1, GTBN là - 4
pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)
\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)
\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)
\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)
Dấu "=" tự xét nhé
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)