K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

5x2 + 8xy + 5y2 = 72

<=> 5x2 + 10xy + 5y2 - 2xy = 72

<=> 5(x2 + 2xy + y2) - 2xy = 72

<=> 5(x + y)2 - 2xy = 72

<=> -2xy = 72 - 5(x + y)2

A = x2 + y2 = (x + y)2 - 2xy

= (x + y)2 + 72 - 5(x + y)2 

= 72 - 4(x + y)2

(x + y)2 > 0 => -4(x + y)2 < 0

=> A < 72

dấu "=" xảy ra khi : x +  y = 0 <=> x = -y

23 tháng 3 2015

Ta có:5x2+8xy+5y2=72

<=>4x2+8xy+4y2+x2+y2=72 

<=>4(x+y)2+(x2+y2)=72

=> tìm đc GTLN

 

http://lop10.com/tuyet-ky-bat-dang-thuc-cosi-2477/

Link này có những bài tương tự 

Học tốt!!!

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

25 tháng 2 2017

Ta có:

7x2+8xy+7y2=0 (*)

=>4x2+8xy+4y2+3x2+3y2=0

=>4(x+y)2+3(x2+y2)=0

=>3(x2+y2)=0-4(x+y)2

=>x2 + y2 =0-4(x+y)2/3

Vậy A lớn nhất khi (x+y)2=0=>x=-y

=>Amax=0/3

25 tháng 2 2017

Thế là \(A_{min}=A_{max}=0\) à

16 tháng 12 2015

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Vì      \(\left(x+y\right)^2\ge0;\left(x-1\right)^2\ge0;\left(y+1\right)^2\ge0\)

Để    \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\)

\(\Leftrightarrow y+1=0\Rightarrow y=-1\)

\(\Leftrightarrow x-1=0\Rightarrow x=1\)

Vậy    \(x=1; y=-1\)

 

 

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :

15 tháng 8 2018

a) \(A=x^2-2.10x+100+1\)

\(A=\left(x-10\right)^2+1>=1\)với mọi x

Dấu = xảy ra khi x-10 =0

                           =>x=10

Min A=1 khi x=10

b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3  mới làm dc

15 tháng 8 2018

a)A= \(\left(x^2-2.x.10+100\right)+1\)

=\(\left(x-10\right)^2+1>=1\)

Dấu "=" xảy ra <=> \(\left(x-10\right)^2=0\)<=> \(x-10=0\)<=>\(x=10\)

Vậy MinA = 1 khi x=10