Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\\ 3,x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)\\ =\left(x-y\right)\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(x-y-1\right)\\ 4,x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2\\ =\left(x-y-z\right)\left(x-y+z\right)\\ 5,x^2-3x+xy-3y=x\left(x-3\right)+y\left(x-3\right)\\ =\left(x-3\right)\left(x+y\right)\)
\(a,8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
b, đề thiếu nhé
\(c,x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(d,x^2-2xy+y^2-z^2=\left(x+y\right)^2-z^2\)
\(=\left(x+y-z\right)\left(x+y+z\right)\)
\(e,x^2-3x+xy-3y=\left(x^2-3x\right)+\left(xy-3y\right)\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
câu g hình như sai đề rồi đó ❤ NTN ❤
Khôi Bùi Ông hok rồi ông giúp tui câu b và g cái coi
=(3x+3y)-(x^2+2xy+y^2)=3(x+y)-(x+y)^2=k rõ nữa
=(4x^2-4xy) -(6y^2-6xy)= 4x(x-y)+6y(x-y)=2(x-y)(2x+3y)
\(A=x^3+y^3=2xy\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(=2\left(x^2+y^2-xy\right)\)
\(\Rightarrow2\left(x^2+y^2-xy\right)=2xy\)
\(\Rightarrow x^2+y^2-xy=2xy\)
\(\Rightarrow x^2+y^2-2xy=xy\)
\(\Rightarrow\left(x-y\right)^2=xy\)
\(\left(x-y\right)^2\ge0\Rightarrow xy\ge0\)
Do đó GTNN của A là 0.
1) +) ta có : \(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(=x^2+9y^2+4-6xy+4x-12y+x^2-10x+25+1989\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)
\(\Rightarrow A_{min}=1989\) khi \(x=5;y=\dfrac{7}{3}\)
câu này mk sửa đề chút nha
+) ta có : \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
\(\Rightarrow B_{max}=5\) khi \(y=2;x=3\)
2) a) ta có : \(x^2+y^2=5=\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\)
\(\Leftrightarrow xy=2\)
ta có : \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=9\)
b) ta có : \(x^2+y^2=15=\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\)
\(\Leftrightarrow xy=-5\)
ta có : \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=5^3+3\left(-5\right).5=50\)
c) \(x^2+x-ax-a\)
\(=x\left(x+1\right)-a\left(x+1\right)\)
\(=\left(x+1\right)\left(x-a\right)\)
d) \(2xy-ax+x^2-2ay\)
\(=2y\left(x-a\right)+x\left(x-a\right)\)
\(=\left(x-a\right)\left(2y+x\right)\)
e) \(x^2y+xy^2-x-y\)
\(=xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(xy-1\right)\)
f) \(25-10x-4y^2+x^2\)
\(=\left(x^2-10x+25\right)-\left(2y\right)^2\)
\(=\left(x-5\right)^2-\left(2y\right)^2\)
\(=\left(x-5-2y\right)\left(x-5+2y\right)\)
g) \(x^3-6xy+9y^2-36\)
h) \(4x^2-9y^2+4x-6y\)
\(=\left(2x\right)^2-\left(3y\right)^2+2\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
k) \(-x^2+5x+2xy-5y-y^2\)
\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left(-x+y+5\right)\)
i) \(4x^2-25y^2-6x+15y\)
\(=\left(2x\right)^2-\left(5y\right)^2-3\left(2x-5y\right)\)
\(=\left(2x-5y\right)\left(2x+5y\right)-3\left(2x-5y\right)\)
\(=\left(2x-5y\right)\left(2x+5y-3\right)\)
a, \(x\left(y+z\right)^2+y\left(x+z\right)^2+z\left(x+y\right)^2+4xyz\)
\(=x\left(y+z\right)^2+x^2\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(xy+xz+z^2+yz\right)\)
\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)
b, \(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+xz^2-x^2z-x^2y-xy^2\)
\(=yz\left(y+z\right)-x\left(y+z\right)\left(y-z\right)-x^2\left(y+z\right)\)
\(=\left(y+z\right)\left(yz-xy+xz-x^2\right)\)
\(=\left(y+z\right)\left[y\left(z-x\right)+x\left(z-x\right)\right]\)
\(=\left(y+z\right)\left(y+x\right)\left(z-x\right)\)
A = 2x2 + 6x = 2( x2 + 3x + 9/4 ) - 9/2 = 2( x + 3/2 )2 - 9/2 ≥ -9/2 ∀ x
Dấu "=" xảy ra khi x = -3/2
=> MinA = -9/2 <=> x = -3/2
B = x2 - 2x + y2 - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinB = 1 <=> x = 1 ; y = 2
C = x2 - 2xy + 6y2 - 12x + 2y + 45
= ( x2 - 2xy + y2 - 12x + 12y + 36 ) + ( 5y2 - 10y + 5 ) + 4
= [ ( x2 - 2xy + y2 ) - ( 12x - 12y ) + 36 ] + 5( y2 - 2y + 1 ) + 4
= [ ( x - y )2 - 2( x - y ).6 + 62 ] + 5( y - 1 )2 + 4
= ( x - y - 6 )2 + 5( y - 1 )2 + 4 ≥ 4 ∀ x, y
Dấu "=" xảy ra khi x = 7 ; y = 1
=> MinC = 4 <=> x = 7 ; y = 1
D = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= ( x2 + 5x - 6 )( x2 + 5x + 6 )
= ( x2 + 5x )2 - 36 ≥ -36 ∀ x
Dấu "=" xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinD = -36 <=> x = 0 hoặc x = -5
\(P=\dfrac{x^2-6xy+6y^2}{x^2-2xy+y^2}=\dfrac{-3\left(x^2-2xy+y^2\right)+4x^2-12xy+9y^2}{x^2-2xy+y^2}\)
\(=-3+\left(\dfrac{2x-3y}{x-y}\right)^2\ge-3\)
\(P_{min}=-3\) khi \(2x=3y\)