Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1=x+y\ge2\sqrt{xy}\)
\(\Rightarrow4xy\le1\)
\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{1}=\frac{4}{\left(x+y\right)^2}+1=\frac{4}{1}+1=5\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Áp dụng BĐT AM - MG ta có :
\(xy\)\(\le\)\(\frac{\left(x+y\right)^2}{4}\)\(=\)\(\frac{1}{4}\)
Áp dụng BĐT Cauchy - Schwarz dạng Engel :
\(S\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{3}{4xy}\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{2}{4xy}\)\(-\)\(\frac{1}{4xy}\)
\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{1}{2xy}\)\(-\)\(\frac{1}{4xy}\)\(\ge\)\(\frac{\left(1-1\right)^2}{x^2-y^2-2xy}\)\(-\)\(\frac{1}{4xy}\)
\(\ge\)\(\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)\(-\)\(\frac{1}{4.\frac{1}{4}}\)\(=\)\(4\)\(-\)\(1\)\(=\)\(5\)
Xảy ra khi \(x\)\(=\)\(y\)\(=\)\(\frac{1}{2}\)
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)
\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)
Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2
Cách giải như sau
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1
=x2+3x+1x =x2−x+14 +4x+1x +14
=(x−12 )2+4x+1x +14
Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy minA=4+14 =174 <=> x = y = 1/2
HOK TỐT
\(A=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{x^2}}\ge\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}\ge2\sqrt{\frac{\sqrt{2x}}{\sqrt{y}}.\frac{\sqrt{2y}}{\sqrt{x}}}=2\sqrt{2}\) (Cô si 2 lần)
Vậy min A = \(2\sqrt{2}\). Dấu bằng "=" ra khi và chỉ khi x=y= -1 hoặc x=y=1
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)
TT...
\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)
\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)
\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)
Vậy GTNN của Q là 3 khi x = y = z = 1
Áp dụng BĐT AM-GM ta có:
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}=\frac{1}{x^2+y^2}+\frac{2}{4xy}+\frac{1}{4xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{1}{4xy}\)
\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{1}{4\cdot\frac{1}{4}}=4+1=5\)
Xảy ra khi \(x=y=\frac{1}{2}\)