Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(P=x+\frac{2}{3}y+\frac{1}{3}y+2013\ge2\sqrt{x.\frac{2}{3}y}+\frac{1}{3}y+2013\)
\(\ge2\sqrt{\frac{2}{3}.6}+\frac{1}{3}.3+2013=2\sqrt{4}+1+2013=4+2014=2018\)
Nên GTNN của P là 2018 đạt được khi \(x=2,y=3\)
\(x+y\ge2\sqrt{x.y}\)mà \(x\cdot y\ge6\)
\(\Rightarrow\)\(x+y\ge2\sqrt{x.y}\ge2\sqrt{6}\)
\(\Rightarrow\)\(x+y+2013\ge2\sqrt{x\cdot y}+2013\ge2\sqrt{6}+2013\)
dấu = xảy ra khi \(x+y+2013=2\sqrt{x\cdot y}+2013=2\sqrt{6}+2013\)
\(\Rightarrow\)Min \(p=2\sqrt{6}+2013\)
Bạn xem hộ mình sai ở đâu giùm nha?
Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
Áp dụng BĐT Cô-si, ta có :
\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)
\(\Rightarrow x+y\ge2\)
Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\); \(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)
\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)
Vậy GTNN của P là 2 khi x = y = 1
\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)
\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)
Check xem có sai chỗ nào ko:v
Trời! Chứng minh vậy đọc ai hiểu được chời :)))
Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)
\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)
Lại quên dấu bằng xảy ra kìa em.
"=" xảy ra <=> x=y=1/2