K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 2 2020

\(P=\frac{2}{3xy}+\frac{3}{\sqrt{3\left(1+y\right)}}\ge\frac{2}{3y\left(3-y\right)}+\frac{6}{y+4}\)

\(\Rightarrow P\ge2\left(\frac{-9y^2+28y+4}{3\left(-y^3-y^2+12y\right)}\right)=2\left(\frac{2\left(-y^3-y^2+12y\right)+2y^3-7y^2+4y+4}{3\left(-y^3-y^2+12y\right)}\right)\)

\(P\ge2\left(\frac{2}{3}+\frac{\left(y-2\right)^2\left(2y+1\right)}{3y\left(3-y\right)\left(y+4\right)}\right)\ge\frac{4}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

9 tháng 2 2020

@Nguyễn Việt Lâm duyệt bài giúp em với ạ @Phạm Minh Quang nick đây

BĐT Bu nhi a cốp xki :

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow\left(x.1+y.1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\)

\(\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}\)Nguyễn Thị Thanh Trang

\(P=2018xy+2019\left(x+y\right)\le2018.\frac{x^2+y^2}{2}+2019\sqrt{2\left(x^2+y^2\right)}=2018.\frac{1}{2}+2019\sqrt{2.1}=1009+2019\sqrt{2}\)

Vậy GTLN của P là \(1009+2019\sqrt{2}\) . Dấu \("="\) xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

9 tháng 2 2020

+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)

\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)

\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)

\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)

\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)

max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)

+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)

\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)

\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)

\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)

Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)

NV
9 tháng 2 2020

\(P\ge\frac{\left(x+y\right)^2}{2\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{1}{xy}=\frac{2}{\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{2}{9xy}+\frac{7}{9xy}\)

\(P\ge\frac{8}{4x^2y^2+2x^2+2y^2+4xy+5xy+1}+\frac{7}{9xy}\)

\(P\ge\frac{8}{4\left(\frac{x+y}{2}\right)^4+2\left(x+y\right)^2+\frac{5}{4}\left(x+y\right)^2+1}+\frac{28}{9\left(x+y\right)^2}=\frac{11}{9}\)

27 tháng 5 2019

Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)

Theo viet ta có

\(x_1+x_2=2\)

Vì x1 là nghiệm của phương trình

=> \(x_1^2=2x_1-m\)

Khi đó

\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)

 \(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))

NV
20 tháng 5 2020

Đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(P=\frac{2-2sina.cosa+cos^2a}{4sin^2a-3sina.cosa+cos^2a}=\frac{2-sin2a+\frac{1+cos2a}{2}}{1+\frac{3\left(1-cos2a\right)}{2}-\frac{3}{2}sin2a}=\frac{5-2sin2a+cos2a}{5-3cos2a-3sin2a}\)

\(\Leftrightarrow3P-3P.cos2a-3P.sin2a=5-2sin2a+cos2a\)

\(\Leftrightarrow\left(3P-2\right)sin2a+\left(3P+1\right)cos2a=5P-5\)

Áp dụng BĐT Bunhiacopxki:

\(\left(5P-5\right)^2\le\left(3P-2\right)^2+\left(3P+1\right)^2\)

\(\Leftrightarrow7P^2-44P+20\le0\)

Theo Viet: \(\left\{{}\begin{matrix}M+n=\frac{44}{7}\\Mn=\frac{20}{7}\end{matrix}\right.\)

\(\Rightarrow M^2+n^2=\left(M+n\right)^2-4Mn=\frac{1376}{49}\)

9 tháng 2 2020

\(P=\frac{3}{a}+\frac{3}{4}a+\frac{9}{2b}+\frac{1}{2}b+\frac{4}{c}+\frac{1}{4}c+\frac{1}{4}\left(a+2b+3c\right)\)

\(\ge3\cdot2\sqrt{\frac{1}{a}\cdot\frac{a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{1}{4}\cdot20\)

\(\Rightarrow P\ge3+3+2+5=13\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

19 tháng 4 2021

Áp dụng BĐT Cosi, ta có:

\(\frac{a}{9}\)+\(\frac{1}{a}\)>= 2.\(\frac{1}{3}\)=\(\frac{2}{3}\)

=> a+\(\frac{1}{a}\)=\(\frac{a}{9}\)+\(\frac{8a}{9}\)+\(\frac{1}{a}\)>= \(\frac{2}{3}\)+\(\frac{8a}{9}\)>= \(\frac{2}{3}\)+\(\frac{8.3}{9}\)=\(\frac{10}{3}\)

Vậy GTNN của P là: \(\frac{10}{3}\), tại a=3