K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy

=(x+y)3-xy(3x+3y-2)

=20073-xy[3.2007-2]

làm tiếp đi 

chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)

21 tháng 10 2019

Đầu tiên tìm GTLN, GTNN của xy.

Không mất tính tổng quát giả sử:

\(x\ge y+1\)

\(\Leftrightarrow x-y-1\ge0\)

\(\Leftrightarrow x-y-1+xy\ge xy\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)

Từ đây ta suy được:

\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)

Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)

Ta lại có:

\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)

Thế vô là xong

19 tháng 4 2017

Bên học24 mình đã xài \(\Delta\) vậy bên này mình sẽ xài HĐT kiểu Cosi như ý bn :))

Áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\) ta có:

\(x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\)

\(\Rightarrow A\le4+\frac{A}{2}\Rightarrow A\le8\)

Đẳng thức xảy ra khi \(x=y=\pm2\)

*)Nếu \(xy\ge0\Rightarrow A\ge4\)

*)Nếu \(xy< 0\). WLOG \(x>0;y< 0\)\(y\rightarrow-z\left(z>0\right)\)

Have \(\frac{A}{4}=\frac{x^2+y^2}{4}=\frac{x^2+y^2}{x^2+y^2-xy}\)

\(=1+\frac{xy}{x^2+y^2+xy}=1-\frac{zx}{x^2+z^2+xz}\)

Áp dụng BĐT AM-GM ta có: 

\(\hept{\begin{cases}x^2+z^2\ge2xz\\x^2+z^2+xz\ge3xz\end{cases}}\)\(\Rightarrow\frac{xz}{x^2+z^2+zx}\le\frac{1}{3}\)

\(\Rightarrow\frac{A}{4}=1-\frac{zx}{x^2+z^2+xz}\ge1-\frac{1}{3}=\frac{2}{3}\Rightarrow A\ge\frac{8}{3}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x=\frac{2}{\sqrt{3}}\\y=-\frac{2}{\sqrt{3}}\end{cases}}\) hoặc \(\hept{\begin{cases}x=-\frac{2}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\)

7 tháng 6 2019

Ta có x,y,z là các số thực dương 

Khi đó : \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0.\)

\(\Leftrightarrow5\frac{x^2}{\left(y+z\right)^2}+\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}-\frac{9x}{y+z}-\frac{18yz}{\left(y+z\right)^2}=0\)

\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-\frac{9x}{y+z}=\frac{18yz}{\left(y+z\right)^2}-\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}\)

                                                \(\le\frac{\frac{18\left(y+z\right)^2}{4}}{\left(y+z\right)^2}-\frac{\frac{5\left(y+z\right)^2}{2}}{\left(y+z\right)^2}=\frac{18}{4}-\frac{5}{2}=2.\)

\(\Rightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}\le2.\)

Đặt \(\frac{x}{y+z}=a>0\)ta được \(5a^2-9a-2\le0\)

\(\Leftrightarrow5a^2-10a+a-2\le0\Leftrightarrow\left(5a+1\right)\left(a-2\right)\le0\)

Dễ thấy  \(5a+1>0\)\(\Rightarrow a-2\le0\Leftrightarrow a\le2\Leftrightarrow\frac{x}{y+z}\le2.\)

Ta có: \(Q=\frac{2x-y-z}{y+z}=\frac{2x}{y+z}-1\le2.2-1=3\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}y=z\\\frac{x}{y+z}=2\end{cases}\Leftrightarrow x=4y=4z}\)

Vậy Giá trị lớn nhất của \(Q=3\Leftrightarrow x=4y=4z.\)

24 tháng 6 2018

\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1.\)

\(\left(x^4+1\right)\left(y^4+1\right)+2013\ge2x^2.2y^2+2013\ge4+2013=2017\)

Min=2017 

Dấu "=" xảy ra khi x=y=1

17 tháng 8 2018

ADBDT Cauchy:

2(x^2+y^2)>=(x+y)^2

Dau = khi x=y