Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=9\) ( BĐT Cauchy - Schwart)
Xảy ra đẳng thức khi và chỉ khi \(\frac{1}{x}=\frac{2}{y}\) và x + y = 1 \(\Rightarrow y=2x=2\left(1-y\right)\Rightarrow y=\frac{2}{3}\Rightarrow x=\frac{1}{3}\)
Vậy min A = 9 khi và chỉ khi \(y=\frac{2}{3};x=\frac{1}{3}\)
\(A=\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\)
Có:\(\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\ge\frac{9}{x+\frac{1}{2}y+\frac{1}{2}y}=9\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}y=\frac{1}{3}\)
tick nhé
A=x+y)(1/x+1/y)
phá ra áp dụng cô si cho 2 cái ẩn,,,dấu = 2x=y
Ta có:
\(\left(x-\frac{1}{y}\right)^2\ge0\Rightarrow x^2+\frac{1}{y^2}\ge2.\frac{x}{y}\)
\(\left(y-\frac{1}{x}\right)^2\ge0\Rightarrow y^2+\frac{1}{x^2}\ge2.\frac{y}{x}\)
Mặt khác , vì \(x>0;y>0\)nên suy ra
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\ge2.\frac{x}{y}.2.\frac{y}{x}=4\)
Vậy GTNN của M là 4, khi xy=1
P/s tham khảo nha
Ta sẽ c/m: \(\frac{x}{x+1}\le\frac{9}{16}x+\frac{1}{16}\)
\(\Leftrightarrow\frac{x}{x+1}-\frac{9}{16}x-\frac{1}{16}\le0\)
\(\Leftrightarrow\frac{-\left(3x-1\right)^2}{16\left(x+1\right)}\le0\) (đúng)
Thiết lập tương tự hai BĐT còn lại và cộng theo vế ta được: \(Q\le\frac{9}{16}\left(x+y+z\right)+\frac{3}{16}=\frac{9}{16}+\frac{3}{16}=\frac{3}{4}\)
Vậy Q max = 3/4 khi x = y =z =1/3
Lời giải
Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)
Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)
\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)
\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)
Vậy ...
Dự đoán điểm rơi tại x = y = 2/3 ta sẽ làm như sau
\(A=x+y+\frac{1}{x}+\frac{1}{y}\)
\(=\left(\frac{9x}{4}+\frac{1}{x}\right)+\left(\frac{9y}{4}+\frac{1}{y}\right)-\frac{5}{4}\left(x+y\right)\)
\(\ge2\sqrt{\frac{9x}{4x}}+2\sqrt{\frac{9y}{4y}}-\frac{5}{4}.\frac{4}{3}=\frac{13}{3}\)
Dấu "=" tại x = y = 2/3
Cách khác là UCT (không hay như cách kia đâu=)
Ta sẽ chứng minh: \(x+\frac{1}{x}\ge-\frac{5}{4}x+3\)
\(\Leftrightarrow\frac{\left(3x-2\right)^2}{4x}\ge0\) (đúng)
Thiết lập tương tự BĐT còn lại và cộng theo vế ta được: \(VT\ge-\frac{5}{4}\left(x+y\right)+6\ge-\frac{5}{4}.\frac{4}{3}+6=\frac{13}{3}\)
Dấu "=" xảy ra khi 3x - 2 = 3y - 2 = 0 tức là x = y = 2/3
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
Ta có: \(x+y+z=xyz\Leftrightarrow x=\frac{x+y+z}{yz}\Leftrightarrow x^2=\frac{x^2+xy+xz}{yz}\Leftrightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)
Tương tự, ta được: \(\frac{1}{\sqrt{y^2+1}}=\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}\); \(\frac{1}{\sqrt{z^2+1}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
Cộng theo từng vế ba đẳng thức trên, ta được: \(P=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)\(\le\frac{\frac{y}{x+y}+\frac{z}{z+x}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}+\frac{y}{y+z}}{2}=\frac{3}{2}\)(BĐT Cô-si)
Đẳng thức xảy ra khi x = y = z = \(\sqrt{3}\)
Áp dụng BĐT Bun .... :
\(A=\frac{1}{x}+\frac{4}{y}=\left(x+y\right)\left(\frac{1}{x}+\frac{4}{y}\right)=\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{2}{\sqrt{y}}\right)^2\right]\)
\(\ge\left[\sqrt{x}\cdot\frac{1}{\sqrt{x}}+\sqrt{y}\cdot\frac{2}{\sqrt{y}}\right]^2=\left(1+2\right)^2=9\)
Vậy Min A = 9 tại \(\frac{\sqrt{x}}{\frac{1}{\sqrt{x}}}=\frac{\sqrt{y}}{\frac{2}{\sqrt{y}}}\Rightarrow x=\frac{y}{2}\) thay vào x + y = 1 Giải ra x ; y