K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

\(A=\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=9\)  ( BĐT Cauchy - Schwart)

Xảy ra đẳng thức khi và chỉ khi \(\frac{1}{x}=\frac{2}{y}\) và x + y = 1 \(\Rightarrow y=2x=2\left(1-y\right)\Rightarrow y=\frac{2}{3}\Rightarrow x=\frac{1}{3}\)

Vậy min A = 9 khi và chỉ khi \(y=\frac{2}{3};x=\frac{1}{3}\)

12 tháng 12 2015

\(A=\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\)
Có:\(\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\ge\frac{9}{x+\frac{1}{2}y+\frac{1}{2}y}=9\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}y=\frac{1}{3}\)
tick nhé
 

12 tháng 12 2015

Áp dụng BĐT Bun .... :

\(A=\frac{1}{x}+\frac{4}{y}=\left(x+y\right)\left(\frac{1}{x}+\frac{4}{y}\right)=\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{2}{\sqrt{y}}\right)^2\right]\)

\(\ge\left[\sqrt{x}\cdot\frac{1}{\sqrt{x}}+\sqrt{y}\cdot\frac{2}{\sqrt{y}}\right]^2=\left(1+2\right)^2=9\)

Vậy Min A =  9 tại \(\frac{\sqrt{x}}{\frac{1}{\sqrt{x}}}=\frac{\sqrt{y}}{\frac{2}{\sqrt{y}}}\Rightarrow x=\frac{y}{2}\) thay vào x + y = 1 Giải ra x ; y 

Ta có:

\(\left(x-\frac{1}{y}\right)^2\ge0\Rightarrow x^2+\frac{1}{y^2}\ge2.\frac{x}{y}\)

\(\left(y-\frac{1}{x}\right)^2\ge0\Rightarrow y^2+\frac{1}{x^2}\ge2.\frac{y}{x}\)

Mặt khác , vì \(x>0;y>0\)nên suy ra

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\ge2.\frac{x}{y}.2.\frac{y}{x}=4\)

Vậy GTNN của M là 4, khi xy=1

P/s tham khảo nha

4 tháng 5 2019

Ta sẽ c/m: \(\frac{x}{x+1}\le\frac{9}{16}x+\frac{1}{16}\)

\(\Leftrightarrow\frac{x}{x+1}-\frac{9}{16}x-\frac{1}{16}\le0\)

\(\Leftrightarrow\frac{-\left(3x-1\right)^2}{16\left(x+1\right)}\le0\) (đúng)

Thiết lập tương tự hai BĐT còn lại và cộng theo vế ta được: \(Q\le\frac{9}{16}\left(x+y+z\right)+\frac{3}{16}=\frac{9}{16}+\frac{3}{16}=\frac{3}{4}\)

Vậy Q max = 3/4 khi x = y  =z  =1/3

23 tháng 4 2020

sao lại viết thế kia

học tốt nha

20 tháng 2 2019

                                    Lời giải

Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)

Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)

\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)

\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)

Vậy ...

4 tháng 5 2019

Dự đoán điểm rơi tại x = y = 2/3 ta sẽ làm như sau

\(A=x+y+\frac{1}{x}+\frac{1}{y}\)

    \(=\left(\frac{9x}{4}+\frac{1}{x}\right)+\left(\frac{9y}{4}+\frac{1}{y}\right)-\frac{5}{4}\left(x+y\right)\)

     \(\ge2\sqrt{\frac{9x}{4x}}+2\sqrt{\frac{9y}{4y}}-\frac{5}{4}.\frac{4}{3}=\frac{13}{3}\)

    Dấu "=" tại x = y = 2/3

4 tháng 5 2019

Cách khác là UCT (không hay như cách kia đâu=)

Ta sẽ chứng minh: \(x+\frac{1}{x}\ge-\frac{5}{4}x+3\)

\(\Leftrightarrow\frac{\left(3x-2\right)^2}{4x}\ge0\) (đúng)

Thiết lập tương tự BĐT còn lại và cộng theo vế ta được: \(VT\ge-\frac{5}{4}\left(x+y\right)+6\ge-\frac{5}{4}.\frac{4}{3}+6=\frac{13}{3}\)

Dấu "=" xảy ra khi 3x - 2 = 3y - 2 = 0 tức là x = y = 2/3

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

31 tháng 12 2020

Ta có: \(x+y+z=xyz\Leftrightarrow x=\frac{x+y+z}{yz}\Leftrightarrow x^2=\frac{x^2+xy+xz}{yz}\Leftrightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)

Tương tự, ta được: \(\frac{1}{\sqrt{y^2+1}}=\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}\)\(\frac{1}{\sqrt{z^2+1}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

Cộng theo từng vế ba đẳng thức trên, ta được: \(P=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)\(\le\frac{\frac{y}{x+y}+\frac{z}{z+x}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}+\frac{y}{y+z}}{2}=\frac{3}{2}\)(BĐT Cô-si)

Đẳng thức xảy ra khi x = y = z = \(\sqrt{3}\)

28 tháng 10 2021

taị sao lại là căn 3 vậy ạ