Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lê Nhật Minh này! Bạn k bt thì đừng nói. Có phải bài nào cx giống nhau đâu, mak có thế thì bạn cx sai
x2-y=y2-x
<=>(x2-y2)+(x-y)=0
<=>(x-y)(x+y)+(x-y)=0
<=>(x-y)(x+y+1)=0
*)Nếu x-y=0<=>x=y
Tính a theo x ta có
A=x3+x3+3x2(x2+x2)+6x4(x+x)
=2x3+6x4+12x5
*)Nếu x+y+1=0
<=>x=-(y+1)
Tính A theo y ta có
A=(-y-1)3+y3+3(y-1)y[(-y-1)2+y2]+6(-y-1)2y2(-y-1+y)
cái này bạn tự tính
\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)
Bài 1:
\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2+4xy-7y^2\)
Mk chỉ trả lời theo ý kiến của mk thôi nha
Chưa chắc ĐÚNG
Tham khảo nhé
CHúc các bn hok tốt
câu 1.
P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2
P= (x+y+x-y)^2-(2y)^2
P=(2x-2y)(2x+2y)
P=4(x^2-y^2)
câu 2.
a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2
=x(x-1)^2-4xy^2
=x(x-1-2y)(x-1+2y)
b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24
Đặt x^2+5x+4= a
Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24
= a^2+2a-24
=a^2+2a+1-25
= (a+1)^2-5^2
= (a+1-5)(a+1+5)
= (a-4)(a+6)
mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)
= (x^2+5x)(x^2+5x+10)
câu3. (x+2)^2= 4-x^2
=> (x+2)^2-4+x^2=0
=>. (x+2)^2-(2-x)(2+x)=0
=> (x+2)(x+2-2+x)=0
=> (x+2)2x=0
=> x+2=0 hoặc 2x=0
=> x=-2 hoặc x=0
1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 . 3) <=> x^2+4x+4-4+x^2=0
<=> 2x^2+4x=0 <=>2x(x+2)=0 <=>2x=0 hay x+2=0 <=>x=0 hay x=-2
Đăng bài lên để nhờ mọi người giải hộ mà không thấy ai giải hộ cả. Giờ mình cũng đã tìm ra cách giải rồi (không biết có đúng không)
* Theo đề bài ra ta có:
x^2 - y = y^2 - x <=> x^2 - y^2 = y - x <=> (x - y)*(x + y) = y - x <=> x + y = (y - x)/(x - y) (điều kiện x - y # 0)
<=> x + y = -(y - x)/(y - x) = -1 (điều kiện x # y).
<=> x = -y. Ta có 2 trường hợp xảy ra:
T/h1: x = y, khi đó A = x^3 + x^3 + 3x*x(x^2 + x^2) + 6x^2*x^2(x + x) = 2x^3 + 3x^2 * 2x^2 + 6x^4 * 2x = 2x^3 + 6x^4 + 12x^5;
T/h2: x =-y, khi đó A = x^3 + (-x)^3 + 3x*(-x)(x^2 + (-x)^2) + 6x^2*(-x)^2(x + (-x))
= x^3 - x^3 - 3x^2(x^2 + x^2) + 6x^2*x^2(x - x) = -6x^4 + 6x^4 * 0 = -6x^4
\(x^2+2y^2-3xy=0\)
\(\Rightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)
\(\Rightarrow\left(x-2y\right)\left(x-y\right)=0\Rightarrow\orbr{\begin{cases}x=2y\\x=y\end{cases}}\)
x = 2y thì \(A=\frac{2018.2y.y}{\left(2y\right)^2+2y^2}=\frac{4036y^2}{6y^2}=\frac{2018}{3}\)
x = y thì \(A=\frac{2018.y.y}{y^2+y^2}=\frac{2018y^2}{2y^2}=1009\)
Vậy \(\orbr{\begin{cases}A=\frac{2018}{3}\\A=1009\end{cases}}\)
Ta có: x2+y=y2+x
=>x2+y-y2+x=0
=>(x2-y2)-(x-y)=0
=>(x-y)(x+y)-(x-y)=0
=>(x-y)(x+y-1)=0
=>x-y=0 hoặc x+y-1=0
=>x+y=1(TH1 loại do x khác y)
ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)
=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2
=>A=x2-xy+y2+3x3y+3xy3+6x2y2
=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)
=>A=1-3xy+3x2y+3xy2
=>A=1+3xy(-1+a+b)
=>A=1+3xy(-1+1)
=>A=1+3xy.0
=>A=1
Vậy A=1 khi x2+y=y2+x và x khác y.
Lê Đức Huy chép sai đề cau đầu kìa!