Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) do x và y tỉ lệ thuận với nhau nên:
(x/y)=(x1/x2)=(y1/y2) (tc 2)
Thay (2/4)= (y1/y2)
(y1/y2)= (1/2)
=> (y1/1)= (y2/2)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
(y1/1)=(y2/2)={(y1+y2)/(1+2)}={12/3}= 4
Từ y1/1=4 => y1=1*4=4
y2/2=4 => y2=2*4=8
Vậy y1=4
y2=8
Bài 1:
a; Gọi cạnh hình vuông là a thì chu vi hình vuông là: a x 4
Vậy chu vi và cạnh hình vuông là hai đại lượng tỉ lệ thuận.
Hệ số tỉ lệ là: a x 4 : a = 4
Bài 1
b; Gọi cạnh tam giác đều là a thì chu vi tam giác là: a x 3
Vậy chu vi và cạnh của tam giác là hai đại lượng tỉ lệ thuận, hệ số tỉ lệ là: a x 3 : a = 3
Ta có:
x và y là tỉ ệ nghịch nên \(y=\frac{a}{x}\left(1\right)\)
Khi đó : \(y^2=\frac{a}{x^2}=\frac{a}{5}\)
\(\Leftrightarrow3.\frac{a}{2}+4.\frac{a}{5}=46\)
\(\Leftrightarrow\frac{\left(15a+18a\right)}{10}=46\)
\(\rightarrow23a=460\Rightarrow a=20\)
Thế vào (1) \(y=\frac{20}{x}\)
Vì x,y là hai đại lượng tỉ lệ thuận
\(\Rightarrow\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_1}{\frac{2}{5}}=\frac{-6}{\frac{24}{7}}\)
\(\Rightarrow x_1.\frac{24}{7}=\frac{2}{5}.\left(-6\right)\)
\(\Rightarrow x_1.\frac{24}{7}=\frac{-12}{5}\)
\(\Rightarrow x_1=\frac{-12}{5}:\frac{24}{7}=\frac{-7}{10}\)
Vậy x1 =\(\frac{-7}{10}\)
x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
suy ra x1=x2.y1/y2 = 2.(-3/4):1/7 =-21/2
x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau)
Thay số ta có:
x1/(-4) = y1/3=-2/(3-(-4))
<=> x1/(-4) = y1/3=-2/7
suy ra:
x1 = (-4).(-2/7)=8/7
y1 = 3.(-2/7)=-6/7
x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau)
Thay số ta có:
x1/(-4) = y1/3=-2/(3-(-4))
<=> x1/(-4) = y1/3=-2/7
suy ra:
y1 = 3.(-2/7)=-6/7