Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3x^2+y^2+10x-2xy+26=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{5}{2}\right)+\dfrac{47}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\cdot\left(x+\dfrac{5}{2}\right)^2+\dfrac{47}{2}=0\)(vô lý)
b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)
a) x(x - y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 - y) - x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 - yx
= -2xy
Với x = 1212, y = -100 biểu thức có giá trị là -2 . 1212 . (-100) = 100
a) x(x - y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 - y) - x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 - yx
= -2xy
Với x = 1212, y = -100 biểu thức có giá trị là -2 . 1212 . (-100) = 100.
Tìm GTNN với lại câu c mình viết thiếu đề, phải là: 4x2 + 1/ x2 -20 (x>0)
Do x>y>0 nên x+y\(\ne0\)
Ta có \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) (1)
Mặt khác ,do x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy: \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) (2)
Từ (1),(2) ta suy ra : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\left(x+y\right)^2=x^2+y^2+2xy>x^2+y^2\)
\(\frac{1}{\left(x+y\right)^2}<\frac{1}{x^2+y^2}\)
\(\frac{x-y}{\left(x+y\right)^2}<\frac{x-y}{x^2+y^2};vì:x-y>0\)nhân 2 vế với x+y
\(\frac{x-y}{x+y}<\frac{\left(x-y\right)\left(x+y\right)}{x^2+y^2};vì:x+y>0\)