Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt biểu thức đã cho là $A$
\(A=\sqrt{x^2+y^2}+\sqrt{xy}\)
\(\Rightarrow A^2=x^2+y^2+xy+2\sqrt{xy(x^2+y^2)}\)
Áp dụng BĐT AM-GM:
\(x^2+y^2\geq 2xy\Rightarrow 2\sqrt{xy(x^2+y^2)}\geq 2\sqrt{xy.2xy}\geq xy\) do \(x,y\geq 0\)
\(\Rightarrow A^2\geq x^2+y^2+xy+xy\Leftrightarrow A^2\geq (x+y)^2=4\)
\(\Leftrightarrow A\geq 2\) (đpcm)
Dấu bằng xảy ra khi \((x,y)=(2,0)\) và hoán vị.
Mặt khác:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(\sqrt{x^2+y^2}+\sqrt{xy})^2\leq (x^2+y^2+2xy)(1+\frac{1}{2})\)
\(\Leftrightarrow A^2\leq (x+y)^2.\frac{3}{2}=4.\frac{3}{2}=6\)
\(\Leftrightarrow A\leq \sqrt{6}\) (đpcm)
Dấu bằng xảy ra khi \((x,y)=\left(\frac{3+\sqrt{3}}{3}; \frac{3-\sqrt{3}}{3}\right)\)
cách làm cho lớp 9
\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1\)
\(x;y\ge0\Rightarrow xy\ge0\) \(0\le xy\le1\)
đặt x y =t => 0<=t<=1
\(A=\sqrt{x^2+y^2}+\sqrt{xy}=\sqrt{4-2t}+\sqrt{t}\)
\(A>0;A^2=4-t+2\sqrt{4t-2t^2}\)
m =A^2 -4 \(\Leftrightarrow m+t=\sqrt{4t-2t^2}\)
m +t >= 0=> m>=-1
\(\Leftrightarrow m^2+2mt+t^2=4\left(4t-2t^2\right)\)
\(9t^2+2\left(m-8\right)t+m^2=0\)
\(\Delta'\ge0\Leftrightarrow\left(m-8\right)^2-9m^2\ge0\Rightarrow-8m^2-2.8m+64\ge0\)
\(-4\le m\le2\)
với m =2 => t=2/3 đảm bảo điều kiện => GTLN m =2
m cần đảm bảo điều kiện
m+t>=0
\(\Leftrightarrow m+\dfrac{-\left(m-8\right)-\sqrt{-8m^2-18m+64}}{9}\ge0\)
\(\Leftrightarrow\dfrac{9m-\left(m-8\right)-\sqrt{-8m^2-18m+64}}{9}\ge0\)
\(\Leftrightarrow8m+8\ge\sqrt{-8m^2-18m+64}\)
m>=-1 => 8m+8 >=0
\(\Leftrightarrow64m^2+2.8.8m+64\ge-8m^2-18m+64\)
\(\Leftrightarrow m^2+2m\ge0\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge0\end{matrix}\right.\) đang xét m>=1 => m>=0
=> \(0\le m\le2\)
\(0\le A^2-4\le2\Leftrightarrow4\le A^2\le6\)
\(A>0\Rightarrow2\le A\le\sqrt{6}\) =>dpcm
đẳng thức khi t =0 ; t=2/3
\(t=0\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(2;0\right)\\\left(x;y\right)=\left(0;2\right)\end{matrix}\right.\)
\(t=\dfrac{2}{3}\) giải hệ
\(\left\{{}\begin{matrix}x+y=2\\xy=\dfrac{2}{3}\end{matrix}\right.\)
x;y là nghiệm pt : \(3z^2-6z+2=0\)
\(\Delta=9-6=3\Rightarrow\left(x;y\right)=\left(\dfrac{3\pm\sqrt{3}}{3};\dfrac{3\mp\sqrt{3}}{3}\right)\)
ĐK: \(x\ge-1;y\ge0\)
\(x+y+\sqrt{8y}+5=4\sqrt{x+1}+\sqrt{2}\sqrt{xy+y}\)
\(\Leftrightarrow\)\(\left(x+1-4\sqrt{x+1}+4\right)-\left(\sqrt{x+1}\sqrt{2y}-2\sqrt{2y}\right)+y=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-\sqrt{2y}\left(\sqrt{x+1}-2\right)+y=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-2\sqrt{\frac{y}{2}}\left(\sqrt{x+1}-2\right)+\frac{y}{2}+\frac{y}{2}=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}=0\)
Có: \(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}\ge0\) ( do \(y\ge0\) )
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x+1}-\frac{y}{2}-2=0\\\frac{y}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
...
\(\frac{1}{x}+\frac{25}{y}\ge\frac{\left(1+5\right)^2}{x+y}\ge\frac{6^2}{6}=6\)
Dấu "=" xảy ra khi \(x+y=6\) và \(\frac{1}{x}=\frac{5}{y}=\frac{1+5}{x+y}=\frac{6}{6}=1\)\(\Rightarrow\)\(x=1;y=5\)
VẬy bạn giải ra cho mọi người xem được ko?
Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
Đặt \(\hept{\begin{cases}\sqrt{x}=p\\\sqrt{y}=q\\\sqrt{z}=r\end{cases}}\). Khi đó \(\hept{\begin{cases}p+q+r=1\\p,q,r>0\end{cases}}\)
và ta cần chứng minh \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\)
Ta có: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}=\frac{2pq}{\sqrt{\left(1+1+2\right)\left(p^2+q^2+2r^2\right)}}\)
\(\le\frac{2pq}{p+q+2r}\le\frac{1}{2}\left(\frac{pq}{p+r}+\frac{pq}{q+r}\right)\)(Theo BĐT Cauchy-Schwarz và BĐT \(\frac{1}{u}+\frac{1}{v}\ge\frac{4}{u+v}\)) (1)
Hoàn toàn tương tự: \(\frac{qr}{\sqrt{q^2+r^2+2p^2}}\le\frac{1}{2}\left(\frac{qr}{q+p}+\frac{qr}{r+p}\right)\)(2); \(\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\left(\frac{rp}{r+q}+\frac{rp}{p+q}\right)\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\)\(\le\frac{1}{2}\left(\frac{r\left(p+q\right)}{p+q}+\frac{p\left(q+r\right)}{q+r}+\frac{q\left(r+p\right)}{r+p}\right)=\frac{1}{2}\left(p+q+r\right)=\frac{1}{2}\)(Do p + q + r = 1)
Đẳng thức xảy ra khi \(p=q=r=\frac{1}{3}\)hay \(x=y=z=\frac{1}{9}\)
sửa đề\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}-\frac{2}{1+xy}\ge0\)
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)( luôn đúng với \(x,y\ge1\))
Đpcm