Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\)
Thay thế \(x+y+z=1\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}+\frac{\left(x+y+z\right)^2-y^2}{y\left(x+y+z\right)+xz}+\frac{\left(x+y+z\right)^2-z^2}{z\left(x+y+z\right)+xy}\)
Áp dụng hằng đẳng thức hiệu 2 bình phương: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{x^2+xy+xz+yz}+\frac{\left(x+z\right)\left(x+2y+z\right)}{xy+y^2+yz+xz}+\frac{\left(x+y\right)\left(x+y+2z\right)}{xz+zy+z^2+xy}\)
\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}+\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}\left(x+y\right)\left(x+z\right)\le\left(\frac{2x+y+z}{2}\right)^2=\frac{\left(2x+y+z\right)^2}{4}\\\left(x+y\right)\left(y+z\right)\le\left(\frac{x+2y+z}{2}\right)^2=\frac{\left(x+2y+z\right)^2}{4}\\\left(x+z\right)\left(y+z\right)\le\left(\frac{x+y+2z}{2}\right)^2=\frac{\left(x+y+2z\right)^2}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\ge\frac{4\left(y+z\right)\left(2x+y+z\right)}{\left(2x+y+z\right)^2}=\frac{4\left(y+z\right)}{2x+y+z}\\\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}\ge\frac{4\left(x+z\right)\left(x+2y+z\right)}{\left(x+2y+z\right)^2}=\frac{4\left(x+z\right)}{x+2y+z}\\\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\ge\frac{4\left(x+y\right)\left(x+y+2z\right)}{\left(x+y+2z\right)^2}=\frac{4\left(x+y\right)}{x+y+2z}\end{matrix}\right.\)
\(\Rightarrow VT\ge\frac{4\left(y+z\right)}{2x+y+z}+\frac{4\left(x+z\right)}{x+2y+z}+\frac{4\left(x+y\right)}{x+y+2z}\)
\(\Rightarrow VT\ge4\left(\frac{y+z}{2x+y+z}+\frac{x+z}{x+2y+z}+\frac{x+y}{x+y+2z}\right)\)
Ta có: \(x+y+z=1\)
\(\Rightarrow\left\{\begin{matrix}y+z=1-x\\x+z=1-y\\x+y=1-z\end{matrix}\right.\) ( 1 )
\(\Rightarrow\left\{\begin{matrix}2x+y+z=1+x\\x+2y+z=1+y\\x+y+2z=1+z\end{matrix}\right.\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow VT\ge4\left(\frac{1-x}{1+x}+\frac{1-y}{1+y}+\frac{1-z}{1+z}\right)\)
\(\Rightarrow VT\ge4\left(\frac{1+x-2x}{1+x}+\frac{1+y-2y}{1+y}+\frac{1+z-2z}{1+z}\right)\)
\(\Rightarrow VT\ge4\left[3-\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\right]\)
\(\Rightarrow VT\ge12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\)
Chứng minh rằng \(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)
\(\Leftrightarrow4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\le6\)
\(\Leftrightarrow\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{1+x-1}{1+x}+\frac{1+y-1}{1+y}+\frac{1+z-1}{1+z}\le\frac{3}{4}\)
\(\Leftrightarrow1-\frac{1}{1+x}+1-\frac{1}{1+y}+1-\frac{1}{1+z}\le\frac{3}{4}\)
\(\Leftrightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{\left(1+1+1\right)^2}{3+x+y+z}=\frac{9}{4}\)
\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le3-\frac{9}{4}\)
\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\) ( đpcm )
Vì \(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)
\(\Rightarrow VT\ge6\)
\(\Leftrightarrow\)\(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\ge6\) ( đpcm )
Cách khác:
\(A=\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)
\(\Leftrightarrow A=\frac{1-x^2}{(x+y)(x+z)}+\frac{1-y^2}{(y+z)(y+x)}+\frac{1-z^2}{(z+x)(z+y)}=\frac{2(x+y+z)-[xy(x+y)+yz(y+z)+xz(x+z)]}{(x+y)(y+z)(x+z)}\)
Có \(A\geq 6\Leftrightarrow 2-[xy(x+y)+yz(y+z)+xz(x+z)]\ge 6(x+y)(y+z)(x+z)\)
\(\Leftrightarrow 2+9xyz\geq 7(x+y+z)(xy+yz+xz)\)
\(\Leftrightarrow 2+9xyz\geq 7(xy+yz+xz)\) \((\star)\)
Theo BĐT Schur bậc 3 kết hợp AM-GM:
\(xyz\geq (x+y-z)(y+z-x)(x+z-y)=(1-2x)(1-2y)(1-2z)\)
\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)
\(\Rightarrow 2+9(xy+yz+xz)\geq 1+4(xy+yz+xz)=(x+y+z)^2+4(xy+yz+xz)\)\(\geq 7(xy+yz+xz)\)
Do đó \((\star)\) được CM. Bài toán hoàn tất. Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
Bài 1: Theo đề : \(2ab+6bc+2ac=7abc\) \(;a,b,c>0\)
Chia cả 2 vế cho \(abc>0\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó: \(M=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow M=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi: \(\hept{\begin{cases}x=\frac{1}{2}\\y=z=1\end{cases}}\Rightarrow M=17\)
\(Min_M=17\Leftrightarrow a=2;b=1;c=1\)
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡 chém bài khó nhất rồi nên em xin mạn phép chém bài dễ ạ.
2/\(VT=\Sigma_{cyc}\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}=\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\)
\(\ge\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\frac{\left(2x+y+z\right)^2}{4}}=\Sigma_{cyc}\frac{4\left(y+z\right)}{2x+y+z}=\Sigma_{cyc}\frac{2\left(y+z-2x\right)}{2x+y+z}+6\)
\(=\Sigma_{cyc}\left(\frac{2\left(x+y+z\right)\left(y+z-2x\right)}{2x+y+z}-\frac{3}{2}\left(y+z-2x\right)\right)+6\)
\(=\Sigma_{cyc}\frac{\left(y+z-2x\right)^2}{2\left(2x+y+z\right)}+6\ge6\)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{6^2}{2\cdot6}=3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=2\)
p/s: Đề sai nha bạn. Dạng tổng quát của bài toán :
Cho \(a,b,c>0;a+b+c=p\). Chứng minh rằng :
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{p}{2}\)
2) Ta có:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)
Áp dụng BĐT Schwarz:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)
Mà x+y=1 nên suy ra:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)
\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)
=>đpcm.
Dấu ''='' xảy ra khi x=y=1/2
với 2 số dương a,b ta luôn có
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\):\(\left(a+b\right)^2\ge4ab\)
Áp dụng vào bài toán, ta có
\(\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{2}{2xy}\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{2}{4xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)(vì x+y=1)
Ta có: x2+y2≤(x+y)2/2 => 1/(x2+y2)≥2/(x+y)2=2
xy≤(x+y)2/4 => 1/xy≥4/(x+y)2=4
=>1/(x2+y2)+1/xy≥2+4=6
Dấu "=" xảy ra khi x=y=1/2
Đặt \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\Rightarrow ab+a+b=3\)
\(\Rightarrow ab+2\sqrt{ab}\le3\Rightarrow\left(\sqrt{ab}+3\right)\left(\sqrt{ab}-1\right)\le0\)
\(\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
\(P=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}=\frac{a}{\sqrt{ab+a+b+a^2}}+\frac{b}{\sqrt{ab+a+b+b^2}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+1\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+1\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+1}+\frac{b}{a+b}+\frac{b}{b+1}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{a}{a+1}+\frac{b}{b+1}\right)=\frac{1}{2}\left(1+\frac{ab+a+ab+b}{ab+a+b+1}\right)=\frac{1}{2}\left(1+\frac{ab+3}{4}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{1+3}{4}\right)=1\)
Dấu " = " xảy ra khi \(a=b=1\) hay \(x=y=1\)
Chúc bạn học tốt !!!
Đặt \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\Rightarrow ab+a+b=3\)
\(\Rightarrow ab+2\sqrt{ab}\le3\Rightarrow\left(\sqrt{ab}+3\right)\left(\sqrt{ab}-1\right)\le0\)
\(\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
\(P=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}=\frac{a}{\sqrt{ab+a+b+a^2}}+\frac{b}{\sqrt{ab+a+b+b^2}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+1\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+1\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+1}+\frac{b}{a+b}+\frac{b}{b+1}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{a}{a+1}+\frac{b}{b+1}\right)=\frac{1}{2}\left(1+\frac{ab+a+ab+b}{ab+a+b+1}\right)=\frac{1}{2}\left(1+\frac{ab+3}{4}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{1+3}{4}\right)=1\)
Dấu "=" xảy ra khi \(a=b=1\) hay \(x=y=1\)
a) Ta có : \(x+y+\frac{2}{x}+\frac{2}{y}=\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\)
Áp dụng bất đẳng thức Cauchy, ta có : \(2x+\frac{2}{x}\ge2\sqrt{2x.\frac{2}{x}}=4\) (1)
Tương tự : \(2y+\frac{2}{y}\ge2\sqrt{2y.\frac{2}{y}}=4\)(2) ; \(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)(3)
Cộng (1) , (2) , (3) theo vế được: \(\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\ge4+4-2=6\)
Hay \(x+y+\frac{2}{x}+\frac{2}{y}\ge6\) (đpcm)
b) Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\) được :
\(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\)
Tương tự : \(\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)
\(\Rightarrow a^4+b^4+c^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^3b^3c^3}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ac}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có:\(x^2-4xy+6y^2+2x+4\)
\(=\left(x-2y\right)^2+\left(x+x+\frac{8}{x^2}\right)+\left(2y^2+\frac{2}{y^2}\right)\)
\(\ge0+6+4=10\)
\(\Rightarrow x^2-4xy+6y^2+2x\ge10-4=6\)
Dấu bằng xảy ra khi x=2 và y=1.