K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Bạn bình phương lên là tính đc GTLN đó

5 tháng 6 2017

cảm ơn bạn

20 tháng 9 2020

\(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)

\(\Rightarrow P\ge\frac{2a}{\sqrt{1+a^2}}+\frac{2b}{\sqrt{1+b^2}}+\frac{2c}{\sqrt{1+c^2}}\)

Áp dụng BĐT AM-GM: \(P=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+b\left(\frac{1}{4\left(a+b\right)}+\frac{1}{a-b}\right)-c\left(\frac{1}{4\left(b+c\right)}+\frac{1}{a-c}\right)=\frac{9}{4}\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)

20 tháng 10 2019

nhầm câu ba chứ không phải câu 4; câu 3 là d

3 tháng 5 2019

Vì \(\hept{\begin{cases}x;y;z\ge0\\x+y+z=1\end{cases}\Rightarrow0\le x;y;z\le1}\)

\(\Rightarrow\hept{\begin{cases}x\left(1-x\right)\ge0\\y\left(1-y\right)\ge0\\z\left(1-z\right)\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-x^2\ge0\\y-y^2\ge0\\z-z^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2\le x\\y^2\le y\\z^2\le z\end{cases}}\)

Ta có \(S=\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\)

             \(=\sqrt{x^2+2x^2+1}+\sqrt{y^2+2y^2+1}+\sqrt{z^2+2z^2+1}\)

             \(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)

              \(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)

                \(=x+1+y+1+z+1\)

               \(=x+y+z+3=4\)

Dấu "=" xảy ra khi x = y = 0 ; z = 1 và các hoán vị

3 tháng 5 2019

xét :\(\sqrt{3a^2+1}=< a+1\)

=>\(3a^2+1=< a^2+2a+1\)

=>\(2a\left(a-1\right)=< 0\)luon dung 

ap dụng bđt vừa chứng minh ta có :S>=x+y+z+3=1

xay ra dấu = khi x=y=0,z=1(hoán vị)

19 tháng 11 2017

áp dụng bđt bunyakovsky cho 2 bộ số (1;1) và (căn x;căn y) ta có: (1^2+1^2)((căn x)^2 +(căn y)^2)>=(1.căn x=1.căn y)^2

                                                                                              <=>2(x+y)>=(căn x+căn y)^2

                                                                                                <=>A=căn x+căn y<=căn(2(x+y))=căn(2.1)=căn 2

đẳng thức xảy ra <=> (căn x)/1=(căn y)/1 và x+y=1<=>x=y=1/2

vậy maxA=căn 2<=>x=y=1/2

11 tháng 4 2016
ap dung bdt bunhiacopxki A^2=<(1+1)(x+y)=2 =>A=< can 2 dau = <=>x=y=1/2
29 tháng 8 2018

Vì x>0; y>0

Nên áp dụng BĐT Cô-si ta có: \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=2\sqrt{\frac{1}{xy}}\)

Mà \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)

Nên \(\frac{1}{2}\ge2.\frac{1}{\sqrt{xy}}\Rightarrow\frac{1}{4}\ge\frac{1}{\sqrt{xy}}\)

\(\Rightarrow4\le\sqrt{xy}\) (C)

Ta có: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\)

Thế (C) vào ta được: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)

Dấu "=" xảy ra <=> x = y

Vậy AMin = 4 khi và chỉ khi x = y

29 tháng 8 2018

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow\frac{1}{2}>=\frac{4}{x+y}\Rightarrow x+y>=8\left(1\right)\)(bđt svacxo)

\(\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{\sqrt{xy}}\Rightarrow\frac{1}{2}>=\frac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}>=4\Rightarrow2\sqrt{xy}>=8\left(2\right)\)(bđt cosi)

từ \(\left(1\right);\left(2\right)\Rightarrow x+2\sqrt{xy}+y>=8+8=16\Rightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>=16\)

mà \(\sqrt{x}>0;\sqrt{y}>0\Rightarrow\sqrt{x}+\sqrt{y}>=4\)

dấu = xảy ra khi x=y=4

vậy min A là 4 khi x=y=4