Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{4x^2+4x+1-\left(4x^2-4x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{2x+1}\cdot\dfrac{5}{4x}=\dfrac{10}{2x+1}\)
c: \(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
2)
a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)
\(=\dfrac{6x}{xy}\)
\(=\dfrac{6}{y}\)
b) \(\dfrac{2x^2}{y}.3xy^2\)
\(=\dfrac{2x^2.3xy^2}{y}\)
\(=\dfrac{6x^3y^2}{y}\)
\(=6x^3y\)
c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x.2y^2}{7y^3.x^2}\)
\(=\dfrac{30xy^2}{7x^2y^3}\)
\(=\dfrac{30}{7xy}\)
d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)
\(=\dfrac{2y}{5x\left(x-y\right)}\)
giúp mik nha mik đang can gâp cam on cam on cac ban truoc nhe
a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1\right)\left(2x+1\right)}{2x^2-1}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1-2x-1\right)\left(2x+1+2x-1\right)}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\dfrac{4x}{2x^2-1}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{5}{2x+1}\)
b) \(\left(\dfrac{1}{x^2+1}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1}{x^2+1}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{1}{x}+\dfrac{x^2}{x}-\dfrac{2x}{x}\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{x^2-2x+1}{x}\right)\)
\(=\dfrac{\left(x-1\right)^2}{x^2+1}.\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x}{x^2+1}\)
c) d) Tự làm đi mình làm biếng quass >.< ^^
ĐKXĐ: \(x\ne\pm y\)
\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)}-\dfrac{2xy^2}{x^4-2x^2y^2+y^4}+\dfrac{7^2}{\left(x^2-y^2\right)\left(x+y\right)}\)
\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)}-\dfrac{2xy^2}{\left(\left(x+y\right).\left(x-y\right)\right)^2}+\dfrac{49}{\left(x+y\right)^2.\left(x-y\right)}\)
\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)^{ }}-\dfrac{2xy^2}{\left(x-y\right)^2.\left(x+y\right)^2}+\dfrac{49}{\left(x+y\right)^2.\left(x-y\right)}\)
\(A=\dfrac{x^2.\left(x+y\right)-2xy^2+49.\left(x-y\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\)
\(A=\dfrac{x^3+x^2y-2xy^2+49x-49y}{\left(x-y\right)^2.\left(x+y\right)^2}\)
ĐKXĐ: \(x\ne\pm1\)
\(B=\dfrac{x+3}{x+1}-\dfrac{2x-1}{x-1}-\dfrac{x-3}{x-1}\)
\(B=\dfrac{\left(x+3\right).\left(x-1\right)-\left(2x-1\right).\left(x+1\right)-\left(x-3\right)\left(x+1\right)}{\left(x+1\right).\left(x-1\right)}\)
\(B=\dfrac{x^2-x+3x-3-2x^2-2x+x+1-x^2-x+3x+3}{\left(x+1\right).\left(x-1\right)}\)
\(B=\dfrac{-4x^2+4x+1}{\left(x+1\right).\left(x-1\right)}=\dfrac{1+4x-4x^2}{\left(x+1\right).\left(x-1\right)}=\dfrac{\left(1-2x\right)^2}{\left(x+1\right).\left(x-1\right)}\)
1) \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}-\dfrac{1}{1-x}+1\)
\(=\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}+\dfrac{1}{x-1}+1\)
\(=\dfrac{x^2}{x+1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x-1}+1\) MTC: \(\left(x-1\right)\left(x+1\right)\)
\(=\dfrac{x^2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2\left(x-1\right)+2x+\left(x+1\right)+\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^3-x^2+2x+x+1+x^2-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)
b) \(\dfrac{1}{x^3-x}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{x^2-1}\)
\(=\dfrac{1}{x\left(x^2-1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\) MTC: \(x\left(x-1\right)\left(x+1\right)\)
\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{x\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1-\left(x+1\right)+2x}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1-x-1+2x}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
a: \(=\dfrac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{6a^2+6a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{4a^2-3a+5+2a^2-3a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{-12a}{\left(a-1\right)\left(a^2+a+1\right)}\)
b: \(=\dfrac{5}{a+1}+\dfrac{10}{a^2-a+1}-\dfrac{15}{\left(a+1\right)\left(a^2-a+1\right)}\)
\(=\dfrac{5a^2-5a+5+10a+10-15}{\left(a+1\right)\left(a^2-a+1\right)}\)
\(=\dfrac{5a^2+5a}{\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{5a}{a^2-a+1}\)
+) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4\cdot\left(x^2+y^2-xy\right)=4\cdot\left[26-\left(-5\right)\right]=4\cdot31=124\)
p/s: Áp dụng kq ở ý đầu
+) \(\dfrac{1}{x^3}+\dfrac{1}{y^3}=\dfrac{x^3+y^3}{x^3y^3}=\dfrac{x^3+y^3}{\left(xy\right)^3}=\dfrac{124}{\left(-5\right)^3}=-\dfrac{124}{125}\)
P/s: áp dụng kq ở ý trên
+) \(x^2+y^2+2x+2y=16+2\left(x+y\right)=26+2\cdot4=26+8=34\)
p/s: Áp dụng kq ý đầu
ta có x+y=4 <=> (x+y)^2 =16
<=> x^2 +2xy+y^2 =16
<=> x^2+2.(-5)+y^2 =16
<=> x^2-10+y^2 =16
<=> x^2+y^2 =26