K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

=(x+y)^2-4(x+y)+1=3^2-4.3+1=9-12+1=-2

23 tháng 7 2019

a) Ta có : \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Đến đây tự làm nha , mik chỉ hưỡng dẫn hướng làm thôi chứ ko giải ra hết cho bạn chép đâu nha, đến đây tự thế vào là ra . Tự túc là hạnh phúc  :)

Hok tốt . Nhìn câu b mik nản quá nên thôi :)

16 tháng 7 2019

\(A=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=9-12+1=-3+1=-2\)

16 tháng 7 2019

2) Dạng này chỉ có nước rút gọn đi thôi:v

Rút gọn đi ta được: \(A=9\left(a^2+b^2+c^2\right)=9m\)

24 tháng 10 2019

Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath

12 tháng 8 2015

2) (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2= (4a^2+4b^2+c^2+8ab-4ac-4bc)+(4b^2+4c^2+a^2+8bc-4ba-4ac)+(4c^2+4a^2+b^2+8ac-4cb-4ab)                                                                         =9a^2+9b^2+9c^2
ma a^2+b^2+c^2=m => 9a^2+9b^2+9c^2=9m

30 tháng 6 2018

bài 1 

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(thay.x+y=3.tacoA=3^2-4.3+1=-2\)

24 tháng 10 2019

2.Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Bài 1:

Ta có: \(\left\{\begin{matrix} x+4=(y-2)^2=y^2-4y+4\\ y+4=(x-2)^2=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=y^2-4y(1)\\ y=x^2-4x(2)\end{matrix}\right. \)

Lấy $(2)-(1)\Rightarrow x^2-4x-(y^2-4y)=y-x$

\(\Leftrightarrow (x^2-y^2)-(4x-4y)+(x-y)=0\)

\(\Leftrightarrow (x-y)(x+y)-3(x-y)=0\Leftrightarrow (x-y)(x+y-3)=0\)

Vì $x\neq y$ nên $x-y\neq 0$. Do đó $x+y-3=0\Rightarrow x+y=3$

Lấy $(1)+(2)\Rightarrow$ \(x^2+y^2=5(x+y)=5.3=15\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Bài 2:

\(P=(2a+2b)^2-2c(2a+2b)+c^2+(2b+2c)^2-2a(2b+2c)+a^2+(2c+2a)^2-2b(2c+2a)+b^2\)

\(=4(a+b)^2+4(b+c)^2+4(c+a)^2+a^2+b^2+c^2-8(ab+bc+ac)\)

\(=4(a^2+2ab+b^2)+4(b^2+2bc+c^2)+4(c^2+2ca+a^2)+a^2+b^2+c^2-8(ab+bc+ac)\)

\(=9(a^2+b^2+c^2)+8(ab+bc+ac)-8(ab+bc+ac)\)

\(=9(a^2+b^2+c^2)=9.9=81\)

9 tháng 7 2018

a)  \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

b)  \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2.7+37=100\)

c)  \(C=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10=25\)

9 tháng 7 2018

a) \(A=x^2+2xy+y^2-4x-4v+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)