Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2\cdot\left(-12\right)=25\)
b, \(B=x^3+y^3=\left(x+y\right)\cdot\left(x^2-xy+y^2\right)=\left(x+y\right)\cdot\left(x^2+y^2-xy\right)\)
\(B=\left(x+y\right)\cdot\left[\left(x+y\right)^2-2xy-xy\right]=\left(-1\right)\cdot\left[\left(-1\right)^2-2\cdot\left(-12\right)-\left(-12\right)\right]=-37\)
c, \(C=x^4+y^4=\left(x^2+y^2\right)^2-2\cdot x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)
\(=\left[\left(-1\right)^2-2\cdot\left(-12\right)\right]^2-2\cdot\left(-12\right)^2=337\)
A= (x+y)2-2xy
B= (x+y)*(x+y-xy)
C= [ (x+y)2 -2xy]2 - 2(xy)2
Từ đây bạn tự thay số vào tự giải nhé!!!
a) \(A=x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
b) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(-1\right).\left(25-\left(-12\right)\right)=-37\)
c) \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(x^2+y^2\right)^2-2.\left(xy\right)^2=25^2-2.\left(-12\right)^2=337\)
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)
\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)