Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)^3 - 3xy(x+y) + z^3 - 3xyz = 0
(x+y+z) ( (x+y)^2 +z^2 -z(x+y) -3xy) =0
(x+y+z) ( x^2+ 2xy+y^2 +z^2- zx-zy-3xy)=0
(x+y+z) ( x^2+y^2+z^2 -zx-zy -xy)=0
Suy ra x+y+z =0
x+y = -z
y+z = -x
x+z = -y
B = -16 + (-3) +2038 = 2019
Ta có: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\left(x,y,z\ne0\right)\)
+) x + y + z = 0 \(\Rightarrow B=\frac{-16z}{z}+\frac{-3x}{x}-\frac{-2038y}{y}\)
\(=-16-3+2038=2019\)
+) x = y = z \(\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}-\frac{2038.2y}{y}\)
\(=32+6-4076=-4038\)
Lời giải:
$x^3+y^3+z^3-3xyz=0$
$\Leftrightarrow (x+y)^3-3xy(x+y)+z^3-3xyz=0$
$\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0$
$\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0$
$\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0$
Đến đây xét 2TH:
TH1: $x+y+z=0$
\(\Rightarrow \left\{\begin{matrix} x+y=-z\\ y+z=-x\\ x+z=-y\end{matrix}\right.\)
\(\Rightarrow B=-16+(-3)+(-2038)=-2057\)
TH2: $x^2+y^2+z^2-xy-yz-xz=0$
$\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0$
$\Rightarrow (x-y)^2=(y-z)^2=(z-x)^2=0$
$\Rightarrow x=y=z$ (vô lý vì $x,y,z$ đôi một khác nhau)
Vậy.......
\(x^3+y^3+z^3-3xyz=0\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)
- Nếu \(x+y+z=0\Rightarrow B=\frac{-16z}{z}-\frac{3x}{x}-\frac{2038y}{y}=...\)
- Nếu \(x=y=z\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}+\frac{2038.2y}{y}=...\)
X3 + Y3 + Z3 = 3XYZ
<=> X3 + Y3 + Z3 - 3XYZ = 0
<=> ( X3 + Y3 ) + Z3 - 3XYZ = 0
<=> ( X + Y )3 - 3XY( X + Y ) + Z3 - 3XYZ = 0
<=> [ ( X + Y )3 + Z3 ] - 3XY( X + Y + Z ) = 0
<=> ( X + Y + Z )[ ( X + Y )2 - ( X + Y ).Z + Z2 - 3XY ] = 0
<=> ( X + Y + Z )( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0
<=> \(\orbr{\begin{cases}X+Y+Z=0\\X^2+Y^2+Z^2-XY-YZ-XZ=0\end{cases}}\)
+) X + Y + Z = 0 => \(\hept{\begin{cases}X+Y=-Z\\Y+Z=-X\\X+Z=-Y\end{cases}}\)
KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(\frac{X+Y}{Y}\right)\left(\frac{Y+Z}{Z}\right)\left(\frac{X+Z}{X}\right)=\frac{-Z}{Y}\cdot\frac{-X}{Z}\cdot\frac{-Y}{X}=-1\)
+) X2 + Y2 + Z2 - XY - YZ - XZ = 0
<=> 2( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0
<=> 2X2 + 2Y2 + 2Z2 - 2XY - 2YZ - 2XZ = 0
<=> ( X2 - 2XY + Y2 ) + ( Y2 - 2YZ + Z2 ) + ( X2 - 2XZ + Z2 ) = 0
<=> ( X - Y )2 + ( Y - Z )2 + ( X - Z )2 = 0 (1)
DỄ DÀNG CHỨNG MINH (1) ≥ 0 ∀ X,Y,Z
DẤU "=" XẢY RA <=> X = Y = Z
KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(1+\frac{Y}{Y}\right)\left(1+\frac{Z}{Z}\right)\left(1+\frac{X}{X}\right)=2\cdot2\cdot2=8\)
Đề chưa chuẩn: tuy nhiên đánh vào -2016 => đáp án đúng:
Vì bản chất như sau:
thỏa ĐK ban đầu x^3+y^3+z^3=3xzy
Từ HĐT=>
\(\orbr{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2-xy-yz-xz=0\left(2\right)\end{cases}}\)
=>(1)&(2) đều có cặp nghiệm x=y=z=0 khi đó P không xác định
do vậy đề thiếu điều kiện x,y,z không đồng thời =0:(*)
Nếu thêm đk (*) giải tiếp
(2) vô nghiệm
do vậy khi đó chỉ có nghiệm duy nhất của (1)
x+y=-z
x+z=-y
z+y=-x
Thay vào biểu thwucs P=-2016
\(x^3+y^3+z^3=3xyz\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
+, \(x+y+z=0\)
\(\Rightarrow x+y=-z;x+z=-y;y+z=-x\)
\(\Rightarrow P=\frac{xyz}{-xyz}=-1\)
+, \(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow P=\frac{x^3}{2x\cdot2x\cdot2x}=\frac{1}{8}\)