Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}\)
\(=\dfrac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}.5^{22}.2^{17}.2^{17}.7^{17}.5^9.5^9}\)
Bạn rút gọn sẽ còn lại:
\(=\dfrac{2.5}{7.9}=\dfrac{10}{63}\)
Câu 4:
\(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)\(K=\left(x^2y\right)^2-2.x^2y.3+3^2-\left[\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\right]+6xy^3-x^4y^2+8x^3-6x^2y-y^3\)\(K=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6x^2y-y^3\)\(K=9\)
Bài 1: Chưa đủ dữ kiện để tính. Từ $a+b=2$ bạn chỉ có thể tính $a^2+b^2+2ab$
Bài 2:
\(a^2+b^2-ab-a-b+1=0\)
\(\Leftrightarrow 2a^2+2b^2-2ab-2a-2b+2=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)=0\)
\(\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0\)
Vì \((a-b)^2\geq 0; (a-1)^2\geq 0;(b-1)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow (a-b)^2+(a-1)^2+(b-1)^2\geq 0\)
Dấu "=" xảy ra khi \((a-b)^2=(a-1)^2=(b-1)^2=0\Leftrightarrow a=b=1\)
Bài 3:
\(x+y=x^3+y^3=(x+y)(x^2-xy+y^2)\)
\(\Leftrightarrow (x+y)(x^2-xy+y^2-1)=0\)
\(\Rightarrow \left[\begin{matrix} x+y=0\\ x^2-xy+y^2-1=0\end{matrix}\right.\).
Nếu $x+y=0$ \(\Rightarrow x^2+y^2=x+y=0\)
Mà \(x^2\geq 0, y^2\geq 0, \forall x,y\) nên để tổng của chúng bằng $0$ thì \(x^2=y^2=0\Leftrightarrow x=y=0\) (thỏa mãn)
Nếu \(x^2-xy+y^2-1=0\)
\(\Leftrightarrow (x^2+y^2)-xy-1=0\)
\(\Leftrightarrow x+y-xy-1=0\)
\(\Leftrightarrow (x-1)(1-y)=0\) \(\Rightarrow \left[\begin{matrix} x=1\\ y=1\end{matrix}\right.\)
\(x=1\Rightarrow 1+y=1+y^2=1+y^3\)
\(\Leftrightarrow y=y^2=y^3\Rightarrow y=0\) hoặc $y=1$
\(y=1\Rightarrow x+1=x^2+1=x^3+1\)
\(\Leftrightarrow x=x^2=x^3\Rightarrow x=0\) hoặc $x=1$.
Vậy $(x,y)=(0,0); (1,0), (0,1), (1,1)$
a, (y-3)(y+3)=y2-32=y2-9 (hằng đẳng thức)
b, (a-b-c)2 - (a-b+c)2= ((a-b-c)-(a-b+c)).((a-b-c)+(a-b+c))
=(a-b-c-a+b-c).(a-b-c+a-b+c)=-2c+2a-2b
c, (m+n)(m2 -mn+n2)=m3+n3(hằng đẳng thức)
d
\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+xz+yz\right)=0\\xy+xz+yz=-\dfrac{1}{2}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x^4+y^4+z^4+2\left[\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2\right]=1\\xy+xz+yz=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^4+y^4+z^4\right)=2-4\left[\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2\right]\\\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2+2\left[xyz\left(x+y+z\right)\right]=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^4+y^4+z^4\right)=2-4.\dfrac{1}{4}\\\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow2\left(x^4+y^4+z^4\right)=2-1=1\)