K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2015

Theo bất đẳng thức Bunhicốpxki ta có \(\left(x^2+4y^2\right)\left(4+1\right)\ge\left(2x+2y\right)^2=4\left(x+y\right)^2\to\left(x+y\right)^2\le\frac{5}{4}.\) Từ đây ta suy ra \(\left|x+y\right|\le\frac{\sqrt{5}}{2}\to-\frac{\sqrt{5}}{2}\le x+y\le\frac{\sqrt{5}}{2}.\)

Ta thấy \(x+y=\frac{\sqrt{5}}{2}\) khi \(x=4y=\frac{2}{\sqrt{5}}\)  và \(x+y=-\frac{\sqrt{5}}{2}\) khi \(x=4y=-\frac{2}{\sqrt{5}}\) .

Do đó giá trị lớn nhất của \(D\)\(\frac{\sqrt{5}}{2}\) và giá trị bé nhất của \(D\)\(-\frac{\sqrt{5}}{2}.\)

23 tháng 7 2016

\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=x^4+2x^2y^2-3x^2+y^4-4y^2+4\)

                                                              \(=\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+3+x^2\)

\(\Rightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+3=-x^2\le0\)

Do đó \(A^2-4A+3\le0\Leftrightarrow\left(A-1\right)\left(A-3\right)\le0\Leftrightarrow1\le A\le3\)

min A =1 \(\Leftrightarrow x=0,\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

max A = 3 <=>  x = 0 , \(\orbr{\begin{cases}y=\sqrt{3}\\y=-\sqrt{3}\end{cases}}\)

nếu x;y>(=)0 thì tìm đc max thôi

18 tháng 9 2017

ĐỀ sai rồi bn ơi

neu x ; y > 0 thi ms tim dc max chu

đề sai nha

1 tháng 5 2020

hello

1 tháng 5 2020

+) Áp dingj BĐT Bu-nhia có

\(\left(x+y\right)^2=\left(x.1+y.1\right)^2\le\left(x^2+y^2\right).\left(1^2+1^2\right)\)

\(\Rightarrow1\le2\left(x^2+y^2\right)\Rightarrow x^2+y^2\ge\frac{1}{2}\)

Min P=\(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)

+)\(P=x^2+y^2=\left(x+y\right)^2-2xy\le\left(x+y\right)^2=1\) (vì \(x;y\ge0\) và \(x+y=1\))

\(\Rightarrow Max\)P=1 khi \(x.y=0\Leftrightarrow\)x=0 hoặc y=0

Vậy Max P =1 khi x=0,y=1 hoặc x=1,y=0

DD
13 tháng 5 2021

\(x^3+y^3+xy=x^2+y^2\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)

\(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).

\(x+y=1\Rightarrow0\le x,y\le1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)

Dấu \(=\)xảy ra tại \(x=0,y=1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)

Dấu \(=\)xảy ra tại \(x=1,y=0\).

19 tháng 5 2019

12=4(x2+y2+xy)= 3(x+y)2+(x-y)2>= 3(x+y)2
=> (x+y)2<=4 => Max, Min

9 tháng 8 2020

100x100=

4 tháng 9 2017

cho x^2+y^2+z^2=1. Tim max xy+yz+2xz? | Yahoo Hỏi & Đáp

4 tháng 9 2017

Ta có: \(xy+yz+2xz\le k\left(x^2+y^2+z^2\right)\left(1\right)\)

Tức cần tìm \(k>0\) để \((1)\) đúng, 

 \(\left(1\right)\Leftrightarrow ky^2-y\left(x+z\right)+kx^2+kz^2-2xz\ge0\)

Coi đây là tam thức bậc hai ẩn \(y\) thì tìm \(\Delta< 0\forall x,z\), có:

\(\Delta=\left(1-4k^2\right)\left(x^2+z^2\right)+2\left(1+4k\right)xz\)

Bất đẳng thức trên đối xứng \(x,z\) nên dự đoán \(P_{Max}\) khi \(x=z\)

Thay \(x=z=1\Rightarrow2k^2-2k-1=0\Rightarrow k=\frac{1+\sqrt{3}}{2}>0\)

Hay \(P_{Max}=3\cdot\frac{1+\sqrt{3}}{2}\)