Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức Bunhicốpxki ta có \(\left(x^2+4y^2\right)\left(4+1\right)\ge\left(2x+2y\right)^2=4\left(x+y\right)^2\to\left(x+y\right)^2\le\frac{5}{4}.\) Từ đây ta suy ra \(\left|x+y\right|\le\frac{\sqrt{5}}{2}\to-\frac{\sqrt{5}}{2}\le x+y\le\frac{\sqrt{5}}{2}.\)
Ta thấy \(x+y=\frac{\sqrt{5}}{2}\) khi \(x=4y=\frac{2}{\sqrt{5}}\) và \(x+y=-\frac{\sqrt{5}}{2}\) khi \(x=4y=-\frac{2}{\sqrt{5}}\) .
Do đó giá trị lớn nhất của \(D\) là \(\frac{\sqrt{5}}{2}\) và giá trị bé nhất của \(D\) là \(-\frac{\sqrt{5}}{2}.\)
\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=x^4+2x^2y^2-3x^2+y^4-4y^2+4\)
\(=\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+3+x^2\)
\(\Rightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+3=-x^2\le0\)
Do đó \(A^2-4A+3\le0\Leftrightarrow\left(A-1\right)\left(A-3\right)\le0\Leftrightarrow1\le A\le3\)
min A =1 \(\Leftrightarrow x=0,\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
max A = 3 <=> x = 0 , \(\orbr{\begin{cases}y=\sqrt{3}\\y=-\sqrt{3}\end{cases}}\)
ĐỀ sai rồi bn ơi
neu x ; y > 0 thi ms tim dc max chu
đề sai nha
+) Áp dingj BĐT Bu-nhia có
\(\left(x+y\right)^2=\left(x.1+y.1\right)^2\le\left(x^2+y^2\right).\left(1^2+1^2\right)\)
\(\Rightarrow1\le2\left(x^2+y^2\right)\Rightarrow x^2+y^2\ge\frac{1}{2}\)
Min P=\(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)
+)\(P=x^2+y^2=\left(x+y\right)^2-2xy\le\left(x+y\right)^2=1\) (vì \(x;y\ge0\) và \(x+y=1\))
\(\Rightarrow Max\)P=1 khi \(x.y=0\Leftrightarrow\)x=0 hoặc y=0
Vậy Max P =1 khi x=0,y=1 hoặc x=1,y=0
\(x^3+y^3+xy=x^2+y^2\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)
- \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).
- \(x+y=1\Rightarrow0\le x,y\le1\).
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)
Dấu \(=\)xảy ra tại \(x=0,y=1\).
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)
Dấu \(=\)xảy ra tại \(x=1,y=0\).
12=4(x2+y2+xy)= 3(x+y)2+(x-y)2>= 3(x+y)2
=> (x+y)2<=4 => Max, Min
Ta có: \(xy+yz+2xz\le k\left(x^2+y^2+z^2\right)\left(1\right)\)
Tức cần tìm \(k>0\) để \((1)\) đúng,
\(\left(1\right)\Leftrightarrow ky^2-y\left(x+z\right)+kx^2+kz^2-2xz\ge0\)
Coi đây là tam thức bậc hai ẩn \(y\) thì tìm \(\Delta< 0\forall x,z\), có:
\(\Delta=\left(1-4k^2\right)\left(x^2+z^2\right)+2\left(1+4k\right)xz\)
Bất đẳng thức trên đối xứng \(x,z\) nên dự đoán \(P_{Max}\) khi \(x=z\)
Thay \(x=z=1\Rightarrow2k^2-2k-1=0\Rightarrow k=\frac{1+\sqrt{3}}{2}>0\)
Hay \(P_{Max}=3\cdot\frac{1+\sqrt{3}}{2}\)