Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x-2=0\Rightarrow\left\{{}\begin{matrix}x^2+2x+1=3\\x^2=2-2x\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=3\\x^4=\left(2-2x\right)^2=4x^2-8x+4\end{matrix}\right.\)
Thay vào M ta được:
\(M=x^4+16x+2017=4x^2-8x+4+16x+2017\)
\(\Rightarrow M=4x^4+8x+4+2017=4\left(x^2+2x+1\right)+2017\)
\(\Rightarrow M=4\left(x+1\right)^2+2017=4.3+2017=2029\)
I=(2x-1)^2+(x-3)^2
=4x^2-4x+1+x^2-6x+9
=5x^2-10x+10
=5(x^2-2x+1)+5
=5(x-1)^2+5
Vì 5(x-1)^2>=0 với mọi x nên I= 5(x-1)^2+5>=5 với mọi x
Dấu bằng xảy ra khi:(x-1)^2=0
x-1=0
x=1
Vậy GTNN cua biểu thức T=5 khi x=1
c,M=(x-2)(x-5)(x^2-7x+10)
=(x^2-7x+10)^2
Vì M=(x^2-7x+10)^2>=0 với mọi x nên dấu bằng xảy ra khi:
x^2-7x+10=0
(x-2)(x-5)=0
Suy ra:x=2 hoặc x=5
Vậy GTNN của M là 0 tại x=2 hoặc x=5
d,T=(4x^2+ 8xy+4y^2)+(x^2 -2x+1)+(y^2+2y+1) -2
=4(x^2+2xy+y^2)+ (x-1)^2+ (y+1)^2 -2
=4(x+y)^2 +(x-1)^2 +(y+1)^2 -2
bạn tự lập luận 4(x+y)^2 +(x-1)^2 +(y+1)^2 -2 >=-2 với mọi x
Dấu = xảy ra khi:x=1,y=-1
Vậy GTNN của T là -2 tại x=1,y=-1
b,ý b dễ rồi mình cho bạn đáp án
GTNN cua N là 1 tại x=0
GTNN là giá trị nhỏ nhất.Chúc bạn học tốt
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
A = 3x ( x2 - 2x + 3) - x2 ( 3x - 2 ) + 5 ( x2 - x )
A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x
A = ( 3x3 - 3x3 ) - ( 6x2 - 2x2 - 5x2 ) + ( 9x - 5x )
A = x
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
A = 4x - x2 + 3
A = -x2 + 4x + 3
A = - (x2 - 4x - 3)
A = - (x - 2)2 + 7 lớn hơn hoặc bằng 7.
Dấu "=" xảy ra khi x - 2 = 0 => x = 2
Vậy...
\(A=4x-x^2+3=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
\(=-\left(x-2\right)^2+7\le7\)
Vậy \(A_{max}=7\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(B=x-x^2=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy \(B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Đêm Noel..Đêm Noel~~~...Ma gõ cửa nhà em:))...Em đi ra~~~~Phi xe ga......Đâm chết năm con gà=)))))))...hố hố...... ~Merry Christmas~ ^-^ Noel đến đít rùi:))