Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4-y^4+x^2y^2+3y^2\)
\(=\left(x^4+x^2y^2\right)+\left(x^4-y^4\right)+3y^2\)
\(=x^2\left(x^2+y^2\right)+\left(x^2-y^2\right)\left(x^2+y^2\right)+3y^2\)
\(=x^2+x^2-y^2+3y^2\) (\(x^2+y^2=1\) )
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)=2.1=2\)
Vậy BT trên không phụ thuộc vào biến (đpcm)
\(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4=-\left(x^2+y^2\right)^2=-1^2=-1\)
1) x2-4x+5+y2+2y=0
<=>x2-4x+4+y2+2y+1=0
<=>(x-2)2+(x+1)2=0
<=>x-2=0 và x+1=0
<=>x=2 và x=-1
2)2p.p2-(p3-1)+(p+3)2p2-3p5
<=>2p3-p3+1+2p3+6p2-3p5
<=>3p3+6p2-3p5+1
3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1
=1
4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3
=-18x2+3(đề sai)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x
=16
Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x
5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0
b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0
6)M+(12x4-15x2y+2xy2+7)=0
<=>M =-(12x4-15x2y+2xy2+7)
<=>M =-12x4+15x2y-2xy2-7
Bài 3:
a: \(=\left(x^3-1\right)\left(x^3-8\right)\)
\(=\left(1-1\right)\left(1-8\right)=0\)
b: \(=x^3-3x^2+3x-1-4x^3+4x+3\left(x^3-1\right)\)
\(=-3x^3-3x^2+7x-1+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot4-14-4=-30\)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)