Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(-x\right)=\dfrac{-x^5+x}{\sqrt{\left(-x\right)^2+\left|-x\right|}}=-f\left(x\right)\)
=>f(x) lẻ
b: \(f\left(-x\right)=\left(\left|9+2x\right|-\left|9-2x\right|\right)\left(-x+5x^3\right)\)
\(=f\left(x\right)\)
=>f(x) chẵn
c: \(f\left(-x\right)=\dfrac{\left|3+x\right|-\left|3-x\right|}{\left(-x\right)^4+1}=-f\left(x\right)\)
=>f(x) lẻ
bài 2
f(x) =|...|
ghép g(x) =x^2 -2x-3
và -(x^2 -2x-3)
m<0 vô nghiệm
m=0 2 nghiệm
m=4 3 nghiệm
0<n<4 4 nghiệm
TH1: x>-2
Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{x+2}\)
=>-6x^2+3x-4x+2=x^2+2x
=>-7x^2-3x+2=0
=>\(x=\dfrac{-3\pm\sqrt{65}}{14}\)
TH2: x<-2
Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{-x-2}=\dfrac{3x+2}{x+2}\)
=>6x^2-3x+4x-2=x^2+2x
=>6x^2+x-2=x^2+2x
=>5x^2-x-2=0
mà x<-2
nên \(x\in\varnothing\)
Câu 1:
\(\Delta=m^2-4\left(m+3\right)\le0\)
\(\Leftrightarrow m^2-4m-12\le0\Rightarrow-2\le m\le6\)
Câu 2:
Để BPT đã cho vô nghiệm tương đương \(mx^2-4\left(m+1\right)x+m-5\le0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4\le0\end{matrix}\right.\) \(\Leftrightarrow-4\le m\le-\frac{1}{3}\)
Tất cả các đáp án đều sai
Câu 3:
Để pt có 2 nghiệm pb
\(\Leftrightarrow\Delta'=\left(m-2\right)^2+2\left(m-2\right)>0\)
\(\Leftrightarrow m^2-2m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)
Tiếp tục tất cả các đáp án đều sai, đề bài gì kì vậy ta
Giả sử các biểu thức đều xác định:
\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+tan^2a=1+tan^2a+tan^2a=1+2tan^2a\)
\(tan^2a-sin^2a=sin^2a\left(\frac{1}{cos^2a}-1\right)=sin^2a\left(\frac{1-cos^2a}{cos^2a}\right)=sin^2a.\frac{sin^2a}{cos^2a}=tan^2a.sin^2a\)
\(\frac{cosa}{1+sina}+tana=\frac{cosa\left(1-sina\right)}{\left(1+sina\right)\left(1-sina\right)}+\frac{sina.cosa}{cos^2a}=\frac{cosa-sina.cosa}{1-sin^2a}+\frac{sina.cosa}{cos^2a}\)
\(=\frac{cosa-sina.cosa+sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)
\(\frac{tanx}{sinx}-\frac{sinx}{cotx}=\frac{tanx}{sinx}-sinx.tanx=tanx\left(\frac{1}{sinx}-sinx\right)=\frac{sinx}{cosx}\left(\frac{1-sin^2x}{sinx}\right)=\frac{sinx.cos^2x}{cosx.sinx}=cosx\)
\(cos\varphi=\frac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}=\frac{-1.2+3.1}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{2^2+1^2}}=\frac{1}{5\sqrt{2}}\)
điều kiện : x >-1/2
⇒ 2x + 1 >0 ⇒ \(\dfrac{4}{2x+1}\) >0
ap dụng bất đẳng thức Cauchy ta có:
f(x) ≥ \(2\sqrt{\left(2x+1\right).\dfrac{4}{2x+1}}\) = 4
⇒ Min f(x) = 4. Dấu '' = '' xảy ra khi và chỉ khi
2x + 1 = \(\dfrac{4}{2x+1}\) ⇒ (2x +1 )2 = 4 ⇒ x = \(\dfrac{1}{2}\)
VẬY ĐÁP ÁN LÀ C
C