K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

ủng hộ mk nha mọi người

7 tháng 4 2017

các bạn kịck cho mình nha

26 tháng 2 2018

2. Có hai cách nhé

Cách 1: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36 
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3y(y + 6) + 36 
--> P = [ 12x(x - 2) + 36 ] + xy(x - 2)(y + 6) + 3y(y + 6) 
--> P = 12[x(x - 2) + 3] + y(y + 6).[x(x - 2) + 3] 
--> P = [x(x - 2) + 3].[y(y + 6) + 12] 
--> P = (x² - 2x + 3)(y² + 6y + 12) 
--> P = [(x - 1)² + 2].[(y + 3)² + 3] ≥ 2.3 = 6 > 0 

Dấu " = " xảy ra ⇔ x = 1 ; y = -3 
Vậy MinP = 6 ⇔ x = 1 ; y = -3 

Cách 2: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36 
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3(y + 3)² + 9 
--> P = x(x - 2)[y(y - 6) + 12] + 3(y + 3)² +9 
--> P = x(x - 2)[(y + 3)² + 3] + 3(y + 3)² + 9 
--> P = x(x - 2)(y + 3)² + 3x(x - 2) + 3(y + 3)² + 9 
--> P = (y + 3)²[x(x - 2) + 3] + 3x(x - 2) + 9 
--> P = (y + 3)²[(x - 1)² + 2] + 3x² - 6x + 9 
--> P = (y + 3)²(x - 1)² + 2(y + 3)² + 3(x - 1)² + 6 ≥ 6 

Dấu " = " xảy ra ⇔ x = 1 ; y = -3 
Vậy MinP = 6 ⇔ x = 1 ; y = -3 

P/S: MinP = 6 > 0 ∀ x, y ∈ R --> P luôn dương ∀ x, y ∈ R 
Mình nghĩ phần CM: "P luôn dương với mọi x,y thuộc R." là hơi thừa :-) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

26 tháng 2 2018

Ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)    (*)

\(\Leftrightarrow\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)   (**)

Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

Vậy thì \(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2=t^2-3t+2=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\)

\(\ge\left(2-\frac{3}{2}\right)^2-\frac{1}{4}=0\)

Vậy bất đẳng thức  (**) đúng hay bất đẳng thức (*) đúng

1 tháng 8 2016

Bạn khá hiểu bài rồi đó. Đúng hết 4 câu đầu luôn.

Bổ sung thêm vào câu 3 một chút (nối tiếp theo sau nhé):

\(\Rightarrow\left(m-n\right)\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\)

Bổ xung thêm vào câu 4:

\(\Rightarrow\left(x-y\right)\left(2x-3y\right)\left(2x+3y\right)\)

Sửa lại câu 5:

\(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2\)

\(=-10x^2\left(2b-a\right)^2-\left(x^2+2\right)\left(2b-a\right)^2\)

\(=\left[-10x^2-\left(x^2+2\right)\right]\left(2b-a\right)^2\)

\(=\left(-10x^2-x^2-2\right)\left(2b-a\right)^2\)

\(=\left(-11x^2-2\right)\left(4b^2-4ab+a^2\right)\)