\(A=4x+\frac{25}{x-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)

\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)

b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)

\(2\sqrt{x}-1>0\);\(4x>0\)

\(\Rightarrow x>0\)thì \(A>A^2\)

18 tháng 7 2015

\(A=\frac{x}{x^4+\frac{1}{x^2}}+\frac{\frac{1}{x}}{x^2+\frac{1}{x^4}}=\frac{x}{\frac{x^6+1}{x^2}}+\frac{\frac{1}{x}}{\frac{x^6+1}{x^4}}=\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=\frac{2x^3}{x^6+1}\)

Áp dụng bất đẳng thức Côsi: \(x^6+1\ge2\sqrt{x^6.1}=2x^3\)

\(\Rightarrow A\le\frac{2x^3}{2x^3}=1\)

Dấu "=" xảy ra khi \(x^3=1\Leftrightarrow x=1\)

Vậy GTNN của A là 1.

\(B=\frac{-8}{3x^2+1}\)

Cách 1:

\(3x^2+1>0\)không có GTLN \(\Rightarrow\frac{8}{3x^2+1}\)không có GTNN \(\Rightarrow-\frac{8}{3x^2+1}\)không có GTLN.

Cách 2:

\(3Bx^2+B=-8\Leftrightarrow3Bx^2+B+8=0\)

+B = 0 thì pt trở thành 0 + 0 + 8 = 0 (vô lí)

+Xét B khác 0. Để pt có nghiệm x thì \(\Delta'=0-4.3B\left(B+8\right)\ge0\Leftrightarrow B\left(B+8\right)\le0\Leftrightarrow-8\le B\le0\)

\(\Rightarrow-8\le B<0\text{ (do }B\ne0\text{)}\)

=> B không có GTLN.

2 tháng 8 2020

em mới lớp 6-7 nên em sẽ giải theo kiểu lớp 6 là

2 tháng 8 2020

em ko biết giải khó quá trời

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

15 tháng 10 2017

\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt AM - GM ta có :

\(\Rightarrow P\le3-\frac{3}{\sqrt[3]{\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\le3-\frac{3}{\frac{x+1+y+1+z+1}{3}}=3-\frac{3}{\frac{4}{3}}=\frac{3}{4}\)

Dấu "=" xảy ra \(x=y=\frac{1}{3}\)

12 tháng 12 2017

P = (x +1 -1)/(x +1) + (y +1 -1)/(y +1) + (z +1 -1)/ (z+1) 
= 3 - [ 1/(x+1) + 1/(y +1) + 1/(z +1) ] 
Áp dụng bđt cô si cơ bản, ta có: 
[(x +1) + (y +1) + (z +1)]. [1/(x+1) + 1/(y +1) + 1/(z +1) ] ≥9 
=> 1/(x+1) + 1/(y +1) + 1/(z +1) ≥ 9/4 ( do x + y + z =1) 
=> P ≤ 3/4 
Dấu " =" xảy ra <=> x = y = z = 1/3 
Vậy maxP = 3/4 

 Ở đây, trước hết bạn phải chứng minh được bđt cô si cơ bản: 
Cho x, y, z >0, ta có: 
(x +y +z) (1/x +1/y +1/z) ≥ 9 
Chứng minh nhanh như sau: 
Theo bđt cô si đã biết, ta có: x + y + z ≥ 3∛(xyz) và 1/x +1/y + 1/z ≥ 3∛ [1/(xyx)] 
⇒(x + y + z)(1/x + 1/y +1/z) ≥ 3∛(xyz) . 3∛[1/(xyx)] =9 
Dấu “=” của bđt xảy ra ⇔ x = y = z 

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn