Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\)
\(=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y+\frac{x+y}{xy}\right)^2}{2}\)
Lại có: \(1=x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)
Khi đó \(A\ge\frac{\left(1+\frac{1}{xy}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+2xy+y^2\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)
Ta có vì : x,y > 0
và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Từ đề bài ta có:
\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)
Áp dụng đẳng thức Cô-si:
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Vậy....
đpcm.
1/x + 1/y >= 4/x+y
<=> x+y/xy >= 4/x+y
<=> (x+y)^2/xy(x+y) >= 4xy/xy(x+y)
<=> x^2 + y^2 + 2xy >= 4xy (x,y > 0)
<=> x^2 + y^2 + 2xy - 4xy >= 0
<=> (x-y)^2 >= 0 ( luôn đúng với mọi x,y)
Vậy bất đẳng thức đề bài đúng
ta có (x-y)^2>=0
=>x^2+y^2>=2xy
=>x^2+2xy+y^2>=4xy
(x+y)^2>=4xy
(x+y)/xy>=4/(x+y)
1/x+1/y>=4/(x+y)
Ta dễ dàng chứng minh BĐT
\(x^4+y^4\ge x^3y+xy^3\)
\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x+y\right)\left(x^3+y^3\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
Chứng minh tương tự, cộng theo vế, ta có:
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{2\left(x+y+z\right)}{2}=2\)
Dấu "=" xảy ra khi x=y=z=1/3
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!