K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

ta có x-y = 7 => (x-y)^2 = 49 <=> x^2 + y^2 - 2xy = 49 <=> x^2+y^2 - 2*60 = 49 <=> x^2+y^2 = 49+ 120 <=> x^2+y^2 = 169 => \(\left(x^2+y^2\right)^2=169^2\)<=> x^4+y^4 + \(2x^2y^2\)= 28561 (1)

từ xy = 60 => x^2 * y^2 = 360 => 2x^2 * y^2 = 720 thay vào 1 tính được A= x^4 + y^4 = 27841 

Chúc bạn học tốt!

16 tháng 12 2016

to cam on

27 tháng 6 2017

Ta có :

x - y = 7

<=> (x - y)2 = 49

<=> x2 - 2xy + y2 = 49

<=> x2 + y2 = 49 - 2xy = 49 - 2.60 = 71

Bình phương vế x2 + y, có :

(x2 + y2)2 = 712

<=> x4 + 2x2y2 + y4 = 5041

<=> x4 + y4 = 5041 - 2(xy)2 = 5041 - 2.602 

<=> x4 + y4 = 5041 - 7200

<=> x4 + y4 = -2159 

27 tháng 6 2017

Sai rồi , làm như thế này :

Có : x - y = 7

<=> (x - y)2 = 49

<=> x2 - 2xy + y2 = 49

<=> x2 + y2 = 49 + 120 = 169

=> (x2 + y2)2 = 1692

=> x4 + 2(xy)2 + y4 = 1692

=> x4 + y4 = 1692 - 2.3600 = 1692 - 7200 = 27841

Thõa mãn vì mũ chẵn của một số luôn lớn hơn hoặc bằng 0 

4 tháng 8 2019

Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

22 tháng 8 2015

a)ta có:

(x+y)2=x2+2xy+y2

=x2-2xy+y2+4xy

=(x-y)2+4.xy

thay x-y=7;xy=60 vào (x-y)2+4.xy ta được:

=72+4.60

=289

=>x+y=17

ta lại có:

x2-y2=(x+y)(x-y)

thay x+y=17;x-y=7 vào x2-y2=(x+y)(x-y) ta được:

x2-y2=17.7=119

b)thay x+y=17;xy=60 vào (x+y)2=x2+2xy+y2 ta được:

172=x2+2.60+y2

289=x2+y2+120

<=>x2+y2=169

ta lại có:

(x2+y2)2=x4+y4+2x2y2

(x2+y2)2=x4+y4+2.(xy)2

thay x2+y2=169;xy=60 vào (x2+y2)2=x4+y4+2.(xy)2 ta được:

1692=x4+y4+2.602

<=>28561=x4+y4+7200

<=>x4+y4=21361

 

16 tháng 10 2024

sai rồi

 

13 tháng 11 2017

b)x4+y4

4 tháng 12 2017

Ta có : x^2+y^2/xy=12/25

=>12(x^2+y^2)=25xy

=>12(x^2+2xy+y^2)=49xy

=>12(x+y)^2=49xy

=>(x+y)^2=49xy/12 (1)

Ta có : x^2+y^2/xy=12/25

=>12(x^2+y^2)=25xy

=>12(x^2-2xy+y^2)=xy

=>12(x-y)^2=xy

=>(x-y)^2=xy/12 (2)

Từ (1) và (2) suy ra :

(x-y)^2/(x+y)^2=1/49

Vì x<y<0 nên x-y/x=y=-1/7

Tick cho mik nhé thanghoa

16 tháng 8 2015

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y)(2x-y)=0

<=> x-2y=0 hoặc 2x-y=0

*)Nếu x-2y=0=>x=2y

=>E=\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

*)Nếu 2x-y=0=>2x=y

=>E=\(\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

21 tháng 5 2018

Ta có: x>y>0

\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}}\)

\(\Rightarrow E=\frac{x+y}{x-y}>0\)

Ta có : E\(=\frac{x+y}{x-y}\)

\(\Rightarrow E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}\)\(=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)

\(\Rightarrow E=\sqrt{9}\)( do E>0)

\(\Leftrightarrow E=3\)

6 tháng 3 2018

+Cộng 1 vào 2 vế của 3 pt ta được:
(x+1)(y+1)=2
(y+1)(z+1)=4
(z+1)(x+1)=8
Nhân hết 2 phương trình bất kỳ rồi chia cho cái còn lại ta được:
\(\left(x+1\right)^2=\dfrac{2.8}{4}=4\);\(\left(y+1\right)^2=\dfrac{2.4}{8}=1\);\(\left(z+1\right)^2=\dfrac{4.8}{2}=16\)
Do x;y;z không âm nên x= 1; y= 0; z= 3

\(=>A=1+0+3=4\)

26 tháng 7 2017

dng cho xin k nha ban

26 tháng 7 2017

bài 3

a) x3+y3

=(x+y)(x2+y2-xy)

=(x+y)[(x+y)2-3xy]

=6.(62-3.8)=72

mk ko biết nó đúng hay sai