Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\ge\dfrac{x^2}{x+y+z}+\dfrac{y^2}{x+y+z}+\dfrac{z^2}{x+y+z}=\dfrac{x^2+y^2+z^2}{x+y+z}=\dfrac{\left(x+y+z\right)^2-2\left(\sqrt{xy}+\sqrt{zx}+\sqrt{yz}\right)}{x+y+z}\ge\dfrac{1-2.1}{1}=-1\)Áp dụng bất đẳng thức cô-si ta có:
\(x+y\ge2\sqrt{xy}\) , \(x+z\ge2\sqrt{xz}\) , \(y+z\ge2\sqrt{yz}\)
Cộng vế với vế suy ra:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{zx}+\sqrt{yz}\right)\\ \Leftrightarrow x+y+z\ge1\)
Vậy
Trà ơi ! Mình xin lỗi bạn nhiều lắm bài đó mình lỡ giải sai, để mình sữa lại cho bạn:
Đầu tiên ta vẫn có:\(x+y+z\ge1\) (chứng minh trên)
Vậy \(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{x^2}{x+y+z}+\dfrac{y^2}{x+y+z}+\dfrac{z^2}{x+y+z}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge x^2+y^2+z^2\ge0\)
Câu trả lời trước bị sai nên làm lại.
Ta có:Q=\(\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}=\dfrac{3x+2y}{6}+\dfrac{6}{3x+2y}\)vì xy=6
Đặt t=3x+2y => t\(\ge2\sqrt{2.y.3.x}\)=12
Theo bđt cô si và t \(\ge\)12 ta được :
Q=\(\left(\dfrac{t}{6}+\dfrac{24}{t}\right)-\dfrac{18}{t}\ge2\sqrt{\dfrac{t}{6}.\dfrac{24}{t}}-\dfrac{18}{t}=\dfrac{5}{2}\)
Đẳng thức xảy ra <=> x=2 và y=3
\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\\ Q=\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}\)
Áp dụng bất đẳng thức Cô si cho hai số không âm và thay xy=6 vào ta được
\(Q\ge2\sqrt{\dfrac{2y+3x}{6}\times\dfrac{6}{2y+3x}}\\ Q\ge2\)
Đẳng thức xảy ra <=> \(\left(3x+2y\right)^2\) =36 và xy=6
<=> x=2,y=3
Lời giải:
Ta có: \(A=\frac{3}{x^2+y^2}+\frac{4}{xy}=3\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{5}{2xy}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}=4\)
Áp dụng BĐT Am-Gm: \(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{5}{2xy}\geq 10\)
Do đó: \(A\geq 3.4+10\Leftrightarrow A\geq 22\)
Vậy \(A_{\min}=22\Leftrightarrow x=y=\frac{1}{2}\)
\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)
Vì x>0, y>0 nên xy>0
Áp dụng bất đẳng thức Cô si cho 2 số dương
\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)
Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)
Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
\(\Rightarrow Q\ge4+2+5+2016=2027\)
Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)
\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)
\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)
\(\Rightarrow x+y+z\geq 1\)
Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)
Vậy \(A_{\min}=\frac{1}{2}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)
\(P=x+3y\)
b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)
Đặt \(t=\sqrt{\dfrac{x}{y}}>0\) và \(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)
\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)
Điểm rơi: \(x=y=\frac{1}{2}.\)
\(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{1}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(=\frac{1}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge2+\frac{6}{1^2}=8\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(a,b>0\right)\)(bn tự cm BĐT này) và BĐT cauchy ta có:
\(A\ge\dfrac{4}{x^2+2xy+y^2}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{\left(x+y\right)^2}\)=
\(=\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{5}{\left(x+y\right)^2}\ge4+2+5=11\)(vì x+y\(\le\)1)
Vậy Min A = 11 \(\Leftrightarrow x=y=\dfrac{1}{2}\)