K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(N=\frac{x^2+2000}{x}=x+\frac{2000}{x}\ge2\sqrt{x.\frac{2000}{x}}=2\sqrt{2000}=40\sqrt{5}\)

Dấu "=" tại \(x=20\sqrt{5}\)

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)

16 tháng 12 2017

\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

8 tháng 8 2016

Áp dụng bđt Côsi:

\(B=\frac{3}{2}x^3+\frac{3}{2}x^3+\frac{1}{3x^2}+\frac{1}{3x^2}+\frac{1}{3x^2}\ge5\sqrt[5]{\left(\frac{3}{2}x^3\right)^2.\left(\frac{1}{3x^2}\right)^3}=\frac{5}{\sqrt[5]{12}}\)

Dấu bằng xảy ra khi \(\frac{3}{2}x^3=\frac{1}{3x^2}\Leftrightarrow x^5=\frac{2}{9}\)\(\Leftrightarrow x=\sqrt[5]{\frac{2}{9}}\)

31 tháng 7 2019

Em thử làm, sai thì thôi nha!

Ta có: \(x^3+y^3+z^3+2\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

Áp dụng BĐT AM-GM và BĐT Nesbitt ta có:

\(VT\ge3\sqrt[3]{\left(xyz\right)^3}+2.\frac{3}{2}\ge3+3=6\)

Đẳng thức xảy ra khi x = y = z = 1.

Vậy.....

Is it right???

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\(x^3+2000=x^3+1000+1000\geq 3\sqrt[3]{x^3.1000.1000}=300x\)

\(\Rightarrow N=\frac{x^3+2000}{x}\geq \frac{300x}{x}=300\)

Vậy \(N_{\min}=300\)

Dấu "=" xảy ra khi \(x^3=1000\Leftrightarrow x=10\)

4 tháng 5 2019

1.

Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)

Dấu "=" khi a = b.

Áp dụng:

\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)

\(=4+2+5=11\)

Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)

4 tháng 5 2019

\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)

\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)

\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)

\(\Delta=P^2-4\left(1-P\right)^2\)

\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)

Để P có GTNN và GTLN thì phương trình (*) có nghiệm

\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)

\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)

\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)

\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)

21 tháng 1 2019

Ta có:

\(P=\frac{a^2}{x}+\frac{b^2}{y}\)

\(=\frac{a^2\left(x+y\right)}{x}+\frac{b^2\left(x+y\right)}{y}\)

\(=a^2+\frac{a^2y}{x}+b^2+\frac{b^2x}{y}\)

\(=a^2+b^2+\left(\frac{a^2y}{x}+\frac{b^2x}{y}\right)\)

Do \(\frac{a^2y}{x},\frac{b^2x}{y}\)có tích không đổi nên tổng chúng nhỏ nhất.

\(\Leftrightarrow\frac{a^2y}{x}=\frac{b^2x}{y}\)

\(\Leftrightarrow a^2y^2=b^2x^2\)

\(\Leftrightarrow ay=bx\)

\(\Leftrightarrow x=\frac{a}{a+b}\)

\(\Leftrightarrow y=\frac{b}{a+b}\)

Vậy \(P_{MIN}=\left(a+b\right)^2\Leftrightarrow x=\frac{a}{a+b},y=\frac{b}{a+b}\)

21 tháng 1 2019

Áp dụng BĐT Cauchy-schwarz ta có:

\(R=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

=> x=...

     y=...

KL:.....................

Forever Miss You ở đâu có cái tích ko đổi thì tổngnhỏ nhất hay thế?

Gửi link cho a đi~~