K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

Ta có : \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Leftrightarrow...+2\left(\dfrac{xyc}{abc}+\dfrac{xbz}{abc}+\dfrac{ayz}{abc}\right)=1\) ( 1 )

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\) ( 2 )

Thế ( 2 ) vào ( 1 ) , ta có :

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)

24 tháng 11 2015

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{xy}{ab}+2.\frac{xz}{ac}+2.\frac{yz}{bc}=1\)

Ta có: \(2.\frac{xy}{ab}+2.\frac{xz}{ac}+2.\frac{yz}{bc}=2.\left(\frac{xy}{ab}+\frac{xz}{ac}+\frac{yz}{bc}\right)\)

Mặt khác, \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) => \(\frac{ayz+bxz+cxy}{xyz}=0\)=> ayz + bxz + cxy = 0 

=> \(\frac{ayz+bxz+cxy}{abc}=0\) => \(\frac{yz}{bc}+\frac{xz}{ac}+\frac{xy}{ab}=0\)

Do đó, \(2.\frac{xy}{ab}+2.\frac{xz}{ac}+2.\frac{yz}{bc}=2.\left(\frac{xy}{ab}+\frac{xz}{ac}+\frac{yz}{bc}\right)=0\)

=> đpcm

20 tháng 10 2018

a, \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(a+c\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\) (đpcm)

b, Từ \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\) hay ayz+bxz+cxy=0

Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{cxy+ayz+bzx}{abc}=1\)

Mà ayz+bxz+cxy=1

=>\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) (đpcm)

20 tháng 10 2018

sửa lại Mà ayz+bzx+cxy=0 nhé

14 tháng 2 2016

kết quả bằng 

A=-4 sử dụng phương pháp quy đồng rồi thế vô la xong phai ko ban cho minh một cái nhé

17 tháng 2 2016

@phạm hoàng việt bạn giải dùm mk đc k