Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
=-5(x^2+4/5x+19/25)
=-5(x^2+2x.2/5+4/25+3/5)
=-5(x+2/5)^2-3
Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3
Vậy Min là-3
=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0
còn lại thì e bó tay . canh
(x+2y)(x2-2xy+4y2)=0
<=>x3+(2y)3=0
<=>x3+8y3=0 (1)
(x-2y)(x2+2xy+4y2)=0
<=>x3-(2y)3=0
<=>x3-8y3=0 (2)
từ (1) và (2)=>x3+8y3-x3+8y3=0
<=>16y3=0
<=>y=0
thay y=0 vào (1) ta đc:
x3-0=0
<=>x3=0
<=>x=0
a) 4x2 + y2 + 4xy + 4x + 2y + 3
= ( 4x2 + 4xy + y2 + 4x + 2y + 1 ) + 2
= [ ( 4x2 + 4xy + y2 ) + ( 4x + 2y ) + 1 ] + 2
= [ ( 2x + y )2 + 2( 2x + y ).1 + 12 ] + 2
= ( 2x + y + 1 )2 + 2 ≥ 2 ∀ x, y
Dấu "=" xảy ra <=> 2x + y + 1 = 0
<=> 2x = -y - 1
<=> x = \(\frac{-y-1}{2}\)
Vậy GTNN của biểu thức = 2 <=> x = \(\frac{-y-1}{2}\)
b) -x2 - y2 - 2xy
= -( x2 + 2xy + y2 )
= -( x + y )2 ≤ 0 ∀ x, y
Dấu "=" xảy ra khi x = -y
Vậy GTLN của biểu thức = 0 <=> x = -y
a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)
\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)
\(=x^2+2xy^3-5xy^2-8z+6xy\)
b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(2x-y\right)\left(2x+y\right)\)
\(=\left(2x\right)^2-y^2\)
\(=4x^2-y^2\)
d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)
\(=6xy+15x-2y^2-5y-64xy\)
\(=-58xy+15x-2y^2-5y\)