Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Thay \(2012=x+1\) vào biểu thức ta có:
\(\Rightarrow B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}-...-\left(x+1\right).x^2+\left(x+1\right).x-1\)
\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^2+x^2+x-1\)
\(=x-1\)
\(\Rightarrow B=2011-1=2010\)
Vậy \(B=2010\)
a) Ta có 2011 = x => 2012 = x + 1
Thay x + 1 = 2012 vào biểu thức ta dc:
x5 - (x + 1)x4 + (x + 1)x3 - (x+1)x2 + (x+1)x - 2012
= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 2012 = x - 2012 = 2011 - 2012 = -1
Vậy giá trị của biểu thức là -1 khi x = 2011
b) Ta có : (x - 1)60 + (y + 2)90 = 0 <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức ta dc: 2.15 - 5.(-2)3 + 4 = 2 - 5.(-8) + 4 = 2 + 40 + 4 = 46
Vậy ...
A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011
≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011
= |y-2010|+|x-2011|+2012≥2012
Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0
<=> {y=2010x=2011{y=2010x=2011
Vay GTNN cua A=2012 khi {x=2011;y=2010
x = 2013 => x + 1 = 2014
Ta có:\(B=x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...+2014x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-\left(x+1\right)x^{2010}+...+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-x^{2011}-x^{2010}+...+x^2+x-1\)
\(=x-1\)
\(=2013-1\)
\(=2012\)
\(X=2013\Rightarrow2014=X+1\Rightarrow B=X^{2013}-\left(X+1\right)\times X^{2012}+...+\left(X+1\right)\times X-1\)\(X-1\)
\(\Rightarrow B=X^{2013}-X^{2013}-X^{2012}+...+X^2+X-1\)
\(\Rightarrow B=X-1\)\(=2013-1=2012\)
Bài làm:
Vì x=2011 => x+1=2012(*)
Thay (*) vào f(x) ta được:
f(2011) = x6 - (x+1)x5 + (x+1)x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 2017
f(2011) = x6 - x5 - x4 + x3 + x2 - x2 - x +2017
f(2011) = -x +2017
f(2011) = -2011 + 2017
f(2011) = 6
Học tốt!!!!
cho 2012=x+1
B=x2012 - (x+1)x^2010+(x+1)x^2009-...+(x+1)x+1
B=x^2012-x^2012-x^2011+x^2011+x^2010-...+x^2+x+1
B=x+1=2012