K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

a) Đặt\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=k\)

=> \(x=2k;y=5k=z=4k\)

Khi đó \(\frac{2x+3y-4z}{x-3y+2z}=\frac{2.2k+3.5k-4.4k}{2k-3.5k+2.4k}=\frac{4k+15k-16k}{2k-15k+8k}=\frac{3k}{-5k}=-\frac{3}{5}\)

b) Khi đó \(\frac{x-2y-z}{4x+y-z}=\frac{2k-2.5k-4k}{4.2k+5k-4k}=\frac{2k-10k-4k}{8k+5k-4k}=\frac{-12k}{9k}=-\frac{4}{3}\)

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

26 tháng 10 2021

???

???
???
???

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

21 tháng 9 2019

b) Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}.\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)\(x+y+z=92.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\Rightarrow x=2.10=20\\\frac{y}{15}=2\Rightarrow y=2.15=30\\\frac{z}{21}=2\Rightarrow z=2.21=42\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(20;30;42\right).\)

c) Ta có: \(2x=3y=5z.\)

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)\(x+y-z=95.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}.\)

\(\left\{{}\begin{matrix}\frac{x}{3}=\frac{95}{6}\Rightarrow x=\frac{95}{6}.3=\frac{95}{2}\\\frac{y}{5}=\frac{95}{6}\Rightarrow y=\frac{95}{6}.5=\frac{475}{6}\\\frac{z}{2}=\frac{95}{6}\Rightarrow z=\frac{95}{6}.2=\frac{95}{3}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(\frac{95}{2};\frac{475}{6};\frac{95}{3}\right).\)

Chúc bạn học tốt!

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...