Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{x+y}{4}\ge\frac{xy}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
Dấu "=" xảy ra khi \(x=y\)
Áp dụng BĐT Cô si cho 2 số dương a,b ta có \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2.\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=>\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}\)
suy ra \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).Áp dụng vào bài toán ta có :\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{4}{x^2+xy+y^2+xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (Do \(x+y\le1\))
Đặt : A = 1/x^2+xy + 1/y^2+xy
Có : A = 1/x.(x+y) + 1/y.(x+y) = 1/x + 1/y ( vì x+y = 1 )
Áp dụng bđt 1/a + 1/b >= 4/a+b với mọi a,b > 0 cho x,y > 0 thì :
A >= 4/x+y = 4/1 = 4
Dấu "=" xảy ra <=> x=y=1/2
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cô-si ta có:
\(xy\left(x^2+y^2\right)=\frac{1}{2}.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(2xy+x^2+y^2\right)^2}{4}\)
\(=\frac{1}{2}.\frac{\left(x+y\right)^4}{4}=2\)
Dấu = xảy ra khi x = y = 1
https://diendantoanhoc.net/topic/119823-cho-xy2-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-xyx2-y2%E2%80%8B-2/
Bài này áp dụng BĐT Cô-si nhưng thử thế này:
Ta thấy x,y đều là số nguyên dương nên có 2 TH:
=> x+y=2=>0<xy<1(1)
Nếu 2xy(x2+y2) < 1 (2)
=>0<2xy(x2+y2) < \(\frac{\left(x+4\right)}{4}\) =4
=> 0< xy (x2 + y2)<2
Nhân (1) và (2) theo vế:
Ta có: x2y2 (x2+ y2)<2
đpcm.
Dấu "=" xảy ra khi x=y=1
Hình như bạn ghi sai đề, đề đúng phải là \(\frac{x^2+y^2}{xy}=\frac{10}{3}\)