K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

CÓ:     \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)

CÓ:     \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)

CÓ:     \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)

CÓ:     \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)

\(=51-2.9=51-18=33\)

CÓ:     \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)

\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)

\(=99-34=65\)

16 tháng 8 2020

\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)

\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)

\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)

7 tháng 10 2019

cảm ơn

7 tháng 10 2019

A=2(x^2-y^2)(x^4+x^2y^2+y^4)-3(x^4-2x^2y^2+y^2-2x^2y^2)

A=2(x^4-2x^2y^2+y^4+3x^2y^2)-3[(x^2-y^2)^2-2x^2y^2]

A=2[(x^2-y^2)^2+3x^2y^2]-3(1-2x^2y^2)

A=2(1+3x^2y^2)-3+6x^2y^2

A=2+6x^2y^2-3+6x^2y^2

A=12x^2y^2-1

...................................

23 tháng 10 2019

Biết x^2 - y^2 = 1. Tính giá trị của biểu thức A = 2(x^6 - y^6) - 3(x^4 - y^4) + 1 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

Tham khảo

23 tháng 10 2019

ko hiện link thì vô tcn của mk nhé

28 tháng 6 2018

2/

2(x6+y6)-3(x4+y4)

=2[(x2)3+(y2)3 ] - 3x4-3y4

=2(x2+y2)(x4-x2y2+y4)-3x4-3y4

=2.1(x4-x2y2+y4)-3x4-3y4

=2x4-2x2y2+2y4-3x4-3y4

=-x4-2x2y2-y4

=-(x4+2x2y2+y4)

=-(x2+y2)

=-1

4 tháng 8 2016

Ta có:

x+y=6          

=>  (x+y) = 36     

=> x+2xy+ y2 = 36      

=>20+2xy         =36    

=> 2xy             = 16

=> xy               =8

Ta lại có:

x3+y3= (x+y). ( x2 + xy +y2)

         = 6 . (20 + 8)

         = 120 + 48

         = 168

Vậy x3+y3=168  

27 tháng 9 2019

Ta có:

x+y=6          

=>  (x+y)2  = 36     

=> x2 +2xy+ y2 = 36      

=>20+2xy         =36    

=> 2xy             = 16

=> xy               =8

Ta lại có:

x3+y3= (x+y). ( x2 + xy +y2)

         = 6 . (20 + 8)

         = 120 + 48

         = 168

Vậy x3+y3=168  

27 tháng 6 2018

\(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left[\left(x^2\right)^3+\left(y^2\right)^3\right]-3\left[\left(x^2\right)^2+\left(y^2\right)^2\right]\)

                                                         \(=2\left[\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\right]-3\left[\left(x^2+y^2\right)^2-2x^2y^2\right]\)

                                                thay \(x^2+y^2=1\) vào ta được

                                                           \(=2\left(1^3-3x^2y^2\right)-3\left(1^2-2x^2y^2\right)\)

                                                             \(=2-6x^2y^2-3+6x^2y^2=-1\)