K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

\(4\left(x^2+y^2+z^2-xy-yz-zx\right)=2\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Tuwf ddos suy ra x-y=y-z=z-x=0

10 tháng 3 2020

(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 =  4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz =  4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)

<=>  2(x^2 + y^2 + z^2 - xy - yz - zx) = 0

<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0

<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0

<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0

<=> x - y = 0 và y - z = 0 và z - x = 0

<=> x = y và y = z và z = x

<=> x = y = z

25 tháng 6 2018

x2+y2+z2=xy+yz+zx

<=>2(x2+y2+z2)=2(xy+yz+zx)

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0

<=>(x-y)2+(y-z)2+(z-x)2=0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow x=y=z}\)(đpcm)

4 tháng 3 2020

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(\Leftrightarrow2x^2-2xy+2y^2-2yz+2z^2-2xz=4\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=4\left(x^2+y^2-xy-xz-yz\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Leftrightarrow x=y=z\)

4 tháng 3 2020

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(< =>2x^2-2xy+2y^2-2yz+2z^2-2xz=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(< =>2.\left(x^2+y^2+x^2-xy-xz-zy\right)=4.\left(x^2+y^2+z^2-xy-xz-zy\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(< =>\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\)

\(< =>\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}< =>x=y=z}\)

1,

\(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=2.0=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

<=> x - y = 0

y - z = 0

z - x =0 

<=> x=y

y=z

z=x

<=> x=y=z

23 tháng 8 2017

1)VD:\(X=Y=Z\Leftrightarrow XY+YZ+ZX=X^2+Y^2+Z^2\)

\(\Leftrightarrow X^2+Y^2+Z^2=XY+YZ+ZX\left(1\right)\)

VD:\(X^2+Y^2+Z^2=XY+YZ+ZX\Leftrightarrow2X^2+2Y^2+2Z^2=2XY+2YZ+2ZX\)

\(\Leftrightarrow2X^2+2Y^2+2Z^2-2XY-2YZ-2ZX=0\)

\(\Leftrightarrow\left(X-Y\right)^2+\left(Y-Z\right)^2+\left(Z-X\right)^2=0\left(HĐT\right)\)

\(\Rightarrow X=Y=Z\left(2\right)\)

\(1\&2\Rightarrow X^2+Y^2+Z^2=XY+YZ+ZX\)

\(\Leftrightarrow X=Y=Z\)

2)\(\Rightarrow A+B+C\Rightarrow X=-\left(Y+Z\right)\Rightarrow X^2=\left(Y+Z\right)^2\)

\(\Leftrightarrow X^2=Y^2+2YZ+Z^2\)

\(\Leftrightarrow X^2-Y^2-Z^2=2YZ\)

\(\Leftrightarrow\left(X^2-Y^2-Z^2\right)^2=4Y^2Z^2\)

\(\Leftrightarrow X^4+Y^4+Z^4=2X^2Y^2+2Y^2Z^2+2Z^2X^2\)

\(\Leftrightarrow2\left(X^4+Y^4+Z^2\right)=\left(X^2+Y^2+Z^2\right)^2=A^4\)

\(\Rightarrow X^4+Y^4+Z^4=\frac{A^4}{2}\)

2 tháng 8 2019

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

6 tháng 7 2023

\(x^2+y^2+z^2=xy+yz+zx\)

=> \(2x^2+2y^2+2x^2=2xy+2yz+2zx\) 

=> \(2x^2+2y^2+2x^2-2xy-2yz-2zx=0\) 

=> \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) 

=> x -y =0 ; y - z=0 ; z - x=0

=> x =y; y =z; z=x

=> x=y=z