Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x-y=2 => y=x-2
=> A=x(x-2)+4=x2-2x+4=x2-2x+1+3=(x-1)2+3>=3
B=x2-2xy+y2+xy=(x-y)2+xy=4+xy>=3
a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)
\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)
\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)
Thay x-y+3=0 vào A
\(A=x^2.0-y.0+0-1=-1\)
b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)
\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)
Thay x-y+3=0 vào B
\(B=x^2.0-xy.0+2.0-2=-2\)
a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)
\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)
\(B=1x^4y^5\)
Hệ số: 1
Bậc: 9
Chưa định hình phần b) nó là như nào
a) A+(x2+y2)=5x2+3y2−xy
⇒A=(5x2+3y2−xy)−(x2+y2)
=(5−1)x2+(3−1)y2−xy
=4x2+2y2−xy
b) A−(xy+x2−y2)=x2+y2
⇒A=(x2+y2)+(xy+x2-y2)
=(1+1)x2+(1−1)y2+xy
=2x2+xy
Lời giải:
Thay \(x=y+2\) ta có:
a)
\(P=xy+4=(y+2)y+4=y^2+2y+4=(y+1)^2+3\)
\(\geq 0+3=3\)
Vậy GTNN của $P$ là $3$ khi \(y+1=0\Leftrightarrow y=-1; x=1\)
b)
\(Q=x^2+y^2-xy=(y+2)^2+y^2-(y+2)y\)
\(=y^2+2y+4=(y+1)^2+3\geq 0+3=3\)
Vậy GTNN của $Q$ là $3$ khi \(y+1=0\Leftrightarrow y=-1; x=1\)